1,111 research outputs found
Integrated temperature compensated Bragg grating refractometer
UV written planar Bragg grating sensors have been shown to form effective refractometers. Here we show that by using the birefringence of an integrated waveguide a temperature insensitive Bragg grating refractometer can be realised
Is Moodle Accessible for Visually Impaired People?
Proceedings of: 7th International Conference on Web Information Systems and Technologies. Noordwijkerhout, The Netherlands, May 6-9, 2011.Most educational centers are currently using e-learning tools to provide the pedagogical resources for the students, especially in higher education. Nevertheless, some students are not able to access to this information because these authoring tools are not as accessible as they should be. The main aim of this paper is to evaluate if one of the most widely e-learning tool used around the world, Moodle, is accessible for visually impaired people. The evaluation shows that the accessibility guidelines provided by the World Wide Web Consortium (W3C) are not accomplished by the tool. Moreover, it shows that people using screen readers are not able to access to the majority of the functionality of Moodle.The work presented in this paper has been partially founded by MA2VICMR (S2009/TIC-1542), GEMMA (TSI-020302-2010-141) and SAGAS (TSI-020100-2010-184) research projects.Publicad
Controlling quantum entanglement through photocounts
We present a protocol to generate and control quantum entanglement between
the states of two subsystems (the system ) by making measurements on
a third subsystem (the monitor ), interacting with . For
the sake of comparison we consider first an ideal, or instantaneous projective
measurement, as postulated by von Neumann. Then we compare it with the more
realistic or generalized measurement procedure based on photocounting on . Further we consider that the interaction term (between and
) contains a quantum nondemolition variable of and discuss
the possibility and limitations for reconstructing the initial state of from information acquired by photocounting on .Comment: 12 pages, 3 figures, accepted for publication in Phys. Rev
Universal behavior of localization of residue fluctuations in globular proteins
Localization properties of residue fluctuations in globular proteins are
studied theoretically by using the Gaussian network model. Participation ratio
for each residue fluctuation mode is calculated. It is found that the
relationship between participation ratio and frequency is similar for all
globular proteins, indicating a universal behavior in spite of their different
size, shape, and architecture.Comment: 4 pages, 3 figures. To appear in Phys. Rev.
Parameter estimation in spatially extended systems: The Karhunen-Loeve and Galerkin multiple shooting approach
Parameter estimation for spatiotemporal dynamics for coupled map lattices and
continuous time domain systems is shown using a combination of multiple
shooting, Karhunen-Loeve decomposition and Galerkin's projection methodologies.
The resulting advantages in estimating parameters have been studied and
discussed for chaotic and turbulent dynamics using small amounts of data from
subsystems, availability of only scalar and noisy time series data, effects of
space-time parameter variations, and in the presence of multiple time-scales.Comment: 11 pages, 5 figures, 4 Tables Corresponding Author - V. Ravi Kumar,
e-mail address: [email protected]
A Zebrafish Compound Screen Reveals Modulation of Neutrophil Reverse Migration as an Anti-Inflammatory Mechanism
Diseases of failed inflammation resolution are common and largely incurable. Therapeutic induction of inflammation resolution is an attractive strategy to bring about healing without increasing susceptibility to infection. However, therapeutic targeting of inflammation resolution has been hampered by a lack of understanding of the underlying molecular controls. To address this drug development challenge, we developed an in vivo screen for proresolution therapeutics in a transgenic zebrafish model. Inflammation induced by sterile tissue injury was assessed for accelerated resolution in the presence of a library of known compounds. Of the molecules with proresolution activity, tanshinone IIA, derived from a Chinese medicinal herb, potently induced inflammation resolution in vivo both by induction of neutrophil apoptosis and by promoting reverse migration of neutrophils. Tanshinone IIA blocked proinflammatory signals in vivo, and its effects are conserved in human neutrophils, supporting a potential role in treating human inflammation and providing compelling evidence of the translational potential of this screening strategy
SPIDER: Probing the Early Universe with a Suborbital Polarimeter
We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a
divergence-free polarization pattern ("B-modes") in the Cosmic Microwave
Background (CMB). In the inflationary scenario, the amplitude of this signal is
proportional to that of the primordial scalar perturbations through the
tensor-to-scalar ratio r. We show that the expected level of systematic error
in the SPIDER instrument is significantly below the amplitude of an interesting
cosmological signal with r=0.03. We present a scanning strategy that enables us
to minimize uncertainty in the reconstruction of the Stokes parameters used to
characterize the CMB, while accessing a relatively wide range of angular
scales. Evaluating the amplitude of the polarized Galactic emission in the
SPIDER field, we conclude that the polarized emission from interstellar dust is
as bright or brighter than the cosmological signal at all SPIDER frequencies
(90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the
"Southern Hole." We show that two ~20-day flights of the SPIDER instrument can
constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when
foreground contamination is taken into account. In the absence of foregrounds,
the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight
schedule updated, two typos fixed in Table 2, references and minor
clarifications added, results unchange
Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models
Both community ecology and conservation biology seek further understanding of
factors governing the advance of an invasive species. We model biological
invasion as an individual-based, stochastic process on a two-dimensional
landscape. An ecologically superior invader and a resident species compete for
space preemptively. Our general model includes the basic contact process and a
variant of the Eden model as special cases. We employ the concept of a
"roughened" front to quantify effects of discreteness and stochasticity on
invasion; we emphasize the probability distribution of the front-runner's
relative position. That is, we analyze the location of the most advanced
invader as the extreme deviation about the front's mean position. We find that
a class of models with different assumptions about neighborhood interactions
exhibit universal characteristics. That is, key features of the invasion
dynamics span a class of models, independently of locally detailed demographic
rules. Our results integrate theories of invasive spatial growth and generate
novel hypotheses linking habitat or landscape size (length of the invading
front) to invasion velocity, and to the relative position of the most advanced
invader.Comment: The original publication is available at
www.springerlink.com/content/8528v8563r7u2742
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
- …