1,111 research outputs found

    Integrated temperature compensated Bragg grating refractometer

    No full text
    UV written planar Bragg grating sensors have been shown to form effective refractometers. Here we show that by using the birefringence of an integrated waveguide a temperature insensitive Bragg grating refractometer can be realised

    Is Moodle Accessible for Visually Impaired People?

    Get PDF
    Proceedings of: 7th International Conference on Web Information Systems and Technologies. Noordwijkerhout, The Netherlands, May 6-9, 2011.Most educational centers are currently using e-learning tools to provide the pedagogical resources for the students, especially in higher education. Nevertheless, some students are not able to access to this information because these authoring tools are not as accessible as they should be. The main aim of this paper is to evaluate if one of the most widely e-learning tool used around the world, Moodle, is accessible for visually impaired people. The evaluation shows that the accessibility guidelines provided by the World Wide Web Consortium (W3C) are not accomplished by the tool. Moreover, it shows that people using screen readers are not able to access to the majority of the functionality of Moodle.The work presented in this paper has been partially founded by MA2VICMR (S2009/TIC-1542), GEMMA (TSI-020302-2010-141) and SAGAS (TSI-020100-2010-184) research projects.Publicad

    Controlling quantum entanglement through photocounts

    Get PDF
    We present a protocol to generate and control quantum entanglement between the states of two subsystems (the system S{\cal S}) by making measurements on a third subsystem (the monitor M{\cal M}), interacting with S{\cal S}. For the sake of comparison we consider first an ideal, or instantaneous projective measurement, as postulated by von Neumann. Then we compare it with the more realistic or generalized measurement procedure based on photocounting on M{\cal M}. Further we consider that the interaction term (between S{\cal S} and M{\cal M}) contains a quantum nondemolition variable of S{\cal S} and discuss the possibility and limitations for reconstructing the initial state of S{\cal S} from information acquired by photocounting on M{\cal M}.Comment: 12 pages, 3 figures, accepted for publication in Phys. Rev

    Universal behavior of localization of residue fluctuations in globular proteins

    Full text link
    Localization properties of residue fluctuations in globular proteins are studied theoretically by using the Gaussian network model. Participation ratio for each residue fluctuation mode is calculated. It is found that the relationship between participation ratio and frequency is similar for all globular proteins, indicating a universal behavior in spite of their different size, shape, and architecture.Comment: 4 pages, 3 figures. To appear in Phys. Rev.

    Parameter estimation in spatially extended systems: The Karhunen-Loeve and Galerkin multiple shooting approach

    Get PDF
    Parameter estimation for spatiotemporal dynamics for coupled map lattices and continuous time domain systems is shown using a combination of multiple shooting, Karhunen-Loeve decomposition and Galerkin's projection methodologies. The resulting advantages in estimating parameters have been studied and discussed for chaotic and turbulent dynamics using small amounts of data from subsystems, availability of only scalar and noisy time series data, effects of space-time parameter variations, and in the presence of multiple time-scales.Comment: 11 pages, 5 figures, 4 Tables Corresponding Author - V. Ravi Kumar, e-mail address: [email protected]

    A Zebrafish Compound Screen Reveals Modulation of Neutrophil Reverse Migration as an Anti-Inflammatory Mechanism

    Get PDF
    Diseases of failed inflammation resolution are common and largely incurable. Therapeutic induction of inflammation resolution is an attractive strategy to bring about healing without increasing susceptibility to infection. However, therapeutic targeting of inflammation resolution has been hampered by a lack of understanding of the underlying molecular controls. To address this drug development challenge, we developed an in vivo screen for proresolution therapeutics in a transgenic zebrafish model. Inflammation induced by sterile tissue injury was assessed for accelerated resolution in the presence of a library of known compounds. Of the molecules with proresolution activity, tanshinone IIA, derived from a Chinese medicinal herb, potently induced inflammation resolution in vivo both by induction of neutrophil apoptosis and by promoting reverse migration of neutrophils. Tanshinone IIA blocked proinflammatory signals in vivo, and its effects are conserved in human neutrophils, supporting a potential role in treating human inflammation and providing compelling evidence of the translational potential of this screening strategy

    SPIDER: Probing the Early Universe with a Suborbital Polarimeter

    Full text link
    We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a divergence-free polarization pattern ("B-modes") in the Cosmic Microwave Background (CMB). In the inflationary scenario, the amplitude of this signal is proportional to that of the primordial scalar perturbations through the tensor-to-scalar ratio r. We show that the expected level of systematic error in the SPIDER instrument is significantly below the amplitude of an interesting cosmological signal with r=0.03. We present a scanning strategy that enables us to minimize uncertainty in the reconstruction of the Stokes parameters used to characterize the CMB, while accessing a relatively wide range of angular scales. Evaluating the amplitude of the polarized Galactic emission in the SPIDER field, we conclude that the polarized emission from interstellar dust is as bright or brighter than the cosmological signal at all SPIDER frequencies (90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the "Southern Hole." We show that two ~20-day flights of the SPIDER instrument can constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when foreground contamination is taken into account. In the absence of foregrounds, the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight schedule updated, two typos fixed in Table 2, references and minor clarifications added, results unchange

    Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models

    Full text link
    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibit universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.Comment: The original publication is available at www.springerlink.com/content/8528v8563r7u2742

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic
    corecore