4,983 research outputs found
Fluctuations of the vortex line density in turbulent flows of quantum fluids
We present an analytical study of fluctuations of the Vortex Line Density
(VLD) in turbulent
flows of quantum fluids. Two cases are considered. The first one is the
counterflowing (Vinen) turbulence, where the vortex lines are disordered, and
the evolution of quantity obeys the Vinen equation. The second
case is the quasi-classic turbulence, where vortex lines are believed to form
the so called vortex bundles, and their dynamics is described by the HVBK
equations. The latter case, is of a special interest, since a number of recent
experiments demonstrate the dependence for spectrum VLD,
instead of law, typical for spectrum of vorticity. In
nonstationary situation, in particular, in the fluctuating turbulent flow there
is a retardation between the instantaneous value of the normal velocity and the
quantity . This retardation tends to decrease in the accordance
with the inner dynamics, which has a relaxation character. In both cases the
relaxation dynamics of VLD is related to fluctuations of the relative velocity,
however if for the Vinen case the rate of temporal change for
is directly depends on , for the HVBK dynamics it
depends on . As a result, for the
disordered case the spectrum coincides with the spectrum . In the
case of the bundle arrangement, the spectrum of the VLD varies (at different
temperatures) from to dependencies. This
conclusion may serve as a basis for the experimental determination of what kind
of the turbulence is implemented in different types of generation.Comment: 8 pages, 29 reference
Averaged Template Matching Equations
By exploiting an analogy with averaging procedures in fluid
dynamics, we present a set of averaged template matching equations.
These equations are analogs of the exact template matching equations
that retain all the geometric properties associated with the diffeomorphismgrou
p, and which are expected to average out small scale features
and so should, as in hydrodynamics, be more computationally efficient
for resolving the larger scale features. Froma geometric point of view,
the new equations may be viewed as coming from a change in norm that
is used to measure the distance between images. The results in this paper
represent first steps in a longer termpro gram: what is here is only
for binary images and an algorithm for numerical computation is not
yet operational. Some suggestions for further steps to develop the results
given in this paper are suggested
Phytoplankton competition along a gradient of dilution rates
Natural phytoplankton from Lake Constance was used for chemostat competition experiments performed at a variety of dilution rates. In the first series at high Si:P ratios and under uniform phosphorus limitation for all species, Synedra acus outcompeted all other species at all dilution rates up to 1.6 d-1, only at the highest dilution rate (2.0 d-1) Achnanthes minutissima was successful. In the second series in the absence of any Si a green algal replacement series was found, with Mougeotia thylespora dominant at the lowest dilution rates, Scenedesmus acutus at the intermediate ones, and Chlorella minutissima at the highest ones. The outcome of interspecific competition was not in contradiction with the Monod kinetics of P-limited growth of the five species, but no satisfactorily precise prediction of competitive performance can be derived from the Monod kinetics because of insufficient precision in the estimate of k s
On the importance of hydrodynamic interactions in polyelectrolyte electrophoresis
The effect of hydrodynamic interactions on the free-solution electrophoresis
of polyelectrolytes is investigated with coarse-grained molecular dynamics
simulations. By comparing the results to simulations with switched-off
hydrodynamic interactions, we demonstrate their importance in modelling the
experimentally observed behaviour. In order to quantify the hydrodynamic
interactions between the polyelectrolyte and the solution, we present a novel
way to estimate its effective charge. We obtain an effective friction that is
different from the hydrodynamic friction obtained from diffusion measurements.
This effective friction is used to explain the constant electrophoretic
mobility for longer chains. To further emphasize the importance of hydrodynamic
interactions, we apply the model to end-labeled free-solution electrophoresis.Comment: 15 pages, 7 figures; accepted for publication in J. Phys.: Condens.
Matte
Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO
Inelastic neutron scattering has been used to study the magneto-elastic
excitations in the multiferroic manganite hexagonal YMnO. An avoided
crossing is found between magnon and phonon modes close to the Brillouin zone
boundary in the -plane. Neutron polarization analysis reveals that this
mode has mixed magnon-phonon character. An external magnetic field along the
-axis is observed to cause a linear field-induced splitting of one of the
spin wave branches. A theoretical description is performed, using a Heisenberg
model of localized spins, acoustic phonon modes and a magneto-elastic coupling
via the single-ion magnetostriction. The model quantitatively reproduces the
dispersion and intensities of all modes in the full Brillouin zone, describes
the observed magnon-phonon hybridized modes, and quantifies the magneto-elastic
coupling. The combined information, including the field-induced magnon
splitting, allows us to exclude several of the earlier proposed models and
point to the correct magnetic ground state symmetry, and provides an effective
dynamic model relevant for the multiferroic hexagonal manganites.Comment: 12 pages, 10 figure
Factors governing the solid phase distribution of Cr, Cu and As in contaminated soil after 40 years of ageing
The physico-chemical factors affecting the distribution, behavior and speciation of chromium (Cr), copper (Cu) and arsenic (As) was investigated at a former wood impregnation site (Fredensborg, Denmark). Forty soil samples were collected and extracted using a sequential extraction technique known as the Chemometric Identification of Substrates and Element Distributions (CISED) and a multivariate statistical tool (redundancy analysis) was applied. CISED data was linked to water-extractable Cr, Cu and As and bioavailable Cu as determined by a whole-cell bacterial bioreporter assay. Results showed that soil pH significantly affected the solid phase distribution of all three elements on site. Additionally, elements competing for binding sites, Ca, Mg and Mn in the case of Cu, and P, in the case of As, played a major role in the distribution of these elements in soil. Element-specific distributions were observed amongst the six identified soil phases including residual pore salts, exchangeable, carbonates (tentative designation), Mn-Al oxide, amorphous Fe oxide, and crystalline Fe oxide. While Cr was strongly bound to non-extractable crystalline Fe oxide in the oxic top soil, Cu and notably, As were associated with readily extractable phases, suggesting that Cu and As, and not Cr, constitute the highest risk to environmental and human health. However, bioavailable Cu did not significantly correlate with CISED identified soil phases, suggesting that sequential extraction schemes such as CISED may not be ideally suited for inferring bioavailability to microorganisms in soil and supports the integration of receptor-specific bioavailability tests into risk assessments as a complement to chemical methods
Critical Exponents of the Classical 3D Heisenberg Model: A Single-Cluster Monte Carlo Study
We have simulated the three-dimensional Heisenberg model on simple cubic
lattices, using the single-cluster Monte Carlo update algorithm. The expected
pronounced reduction of critical slowing down at the phase transition is
verified. This allows simulations on significantly larger lattices than in
previous studies and consequently a better control over systematic errors. In
one set of simulations we employ the usual finite-size scaling methods to
compute the critical exponents from a few
measurements in the vicinity of the critical point, making extensive use of
histogram reweighting and optimization techniques. In another set of
simulations we report measurements of improved estimators for the spatial
correlation length and the susceptibility in the high-temperature phase,
obtained on lattices with up to spins. This enables us to compute
independent estimates of and from power-law fits of their
critical divergencies.Comment: 33 pages, 12 figures (not included, available on request). Preprint
FUB-HEP 19/92, HLRZ 77/92, September 199
Lombardi Drawings of Graphs
We introduce the notion of Lombardi graph drawings, named after the American
abstract artist Mark Lombardi. In these drawings, edges are represented as
circular arcs rather than as line segments or polylines, and the vertices have
perfect angular resolution: the edges are equally spaced around each vertex. We
describe algorithms for finding Lombardi drawings of regular graphs, graphs of
bounded degeneracy, and certain families of planar graphs.Comment: Expanded version of paper appearing in the 18th International
Symposium on Graph Drawing (GD 2010). 13 pages, 7 figure
Highly turbulent solutions of LANS-alpha and their LES potential
We compute solutions of the Lagrangian-Averaged Navier-Stokes alpha-model
(LANS) for significantly higher Reynolds numbers (up to Re 8300) than have
previously been accomplished. This allows sufficient separation of scales to
observe a Navier-Stokes (NS) inertial range followed by a 2nd LANS inertial
range. The analysis of the third-order structure function scaling supports the
predicted l^3 scaling; it corresponds to a k^(-1) scaling of the energy
spectrum. The energy spectrum itself shows a different scaling which goes as
k^1. This latter spectrum is consistent with the absence of stretching in the
sub-filter scales due to the Taylor frozen-in hypothesis employed as a closure
in the derivation of LANS. These two scalings are conjectured to coexist in
different spatial portions of the flow. The l^3 (E(k) k^(-1)) scaling is
subdominant to k^1 in the energy spectrum, but the l^3 scaling is responsible
for the direct energy cascade, as no cascade can result from motions with no
internal degrees of freedom. We verify the prediction for the size of the LANS
attractor resulting from this scaling. From this, we give a methodology either
for arriving at grid-independent solutions for LANS, or for obtaining a
formulation of a LES optimal in the context of the alpha models. The fully
converged grid-independent LANS may not be the best approximation to a direct
numerical simulation of the NS equations since the minimum error is a balance
between truncation errors and the approximation error due to using LANS instead
of the primitive equations. Furthermore, the small-scale behavior of LANS
contributes to a reduction of flux at constant energy, leading to a shallower
energy spectrum for large alpha. These small-scale features, do not preclude
LANS to reproduce correctly the intermittency properties of high Re flow.Comment: 37 pages, 17 figure
Inertial Range Scaling, Karman-Howarth Theorem and Intermittency for Forced and Decaying Lagrangian Averaged MHD in 2D
We present an extension of the Karman-Howarth theorem to the Lagrangian
averaged magnetohydrodynamic (LAMHD-alpha) equations. The scaling laws
resulting as a corollary of this theorem are studied in numerical simulations,
as well as the scaling of the longitudinal structure function exponents
indicative of intermittency. Numerical simulations for a magnetic Prandtl
number equal to unity are presented both for freely decaying and for forced two
dimensional MHD turbulence, solving directly the MHD equations, and employing
the LAMHD-alpha equations at 1/2 and 1/4 resolution. Linear scaling of the
third-order structure function with length is observed. The LAMHD-alpha
equations also capture the anomalous scaling of the longitudinal structure
function exponents up to order 8.Comment: 34 pages, 7 figures author institution addresses added magnetic
Prandtl number stated clearl
- …