6,920 research outputs found

    Divorce Decrees--Power to Vacate after Term

    Get PDF

    Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures

    Get PDF
    We consider Ising-spin systems starting from an initial Gibbs measure ν\nu and evolving under a spin-flip dynamics towards a reversible Gibbs measure μ≠ν\mu\not=\nu. Both ν\nu and μ\mu are assumed to have a finite-range interaction. We study the Gibbsian character of the measure νS(t)\nu S(t) at time tt and show the following: (1) For all ν\nu and μ\mu, νS(t)\nu S(t) is Gibbs for small tt. (2) If both ν\nu and μ\mu have a high or infinite temperature, then νS(t)\nu S(t) is Gibbs for all t>0t>0. (3) If ν\nu has a low non-zero temperature and a zero magnetic field and μ\mu has a high or infinite temperature, then νS(t)\nu S(t) is Gibbs for small tt and non-Gibbs for large tt. (4) If ν\nu has a low non-zero temperature and a non-zero magnetic field and μ\mu has a high or infinite temperature, then νS(t)\nu S(t) is Gibbs for small tt, non-Gibbs for intermediate tt, and Gibbs for large tt. The regime where μ\mu has a low or zero temperature and tt is not small remains open. This regime presumably allows for many different scenarios

    null

    Get PDF
    VW

    Reducing Crime by Shrinking the Prison Headcount

    Get PDF

    Large deviations principle for Curie-Weiss models with random fields

    Full text link
    In this article we consider an extension of the classical Curie-Weiss model in which the global and deterministic external magnetic field is replaced by local and random external fields which interact with each spin of the system. We prove a Large Deviations Principle for the so-called {\it magnetization per spin} Sn/nS_n/n with respect to the associated Gibbs measure, where Sn/nS_n/n is the scaled partial sum of spins. In particular, we obtain an explicit expression for the LDP rate function, which enables an extensive study of the phase diagram in some examples. It is worth mentioning that the model considered in this article covers, in particular, both the case of i.\,i.\,d.\ random external fields (also known under the name of random field Curie-Weiss models) and the case of dependent random external fields generated by e.\,g.\ Markov chains or dynamical systems.Comment: 11 page

    Laboratory Investigations of the Mechanism of Cavitation

    Get PDF
    The paper describes some experimental investigations of the formation and collapse of cavitation bubbles. The experiments were carried on in the high-speed water tunnel of the Hydrodynamics Laboratory of the California Institute of Technology under the sponsorship of the Research and Development Division of the Bureau of Ordnance of the U. S. Navy and the Fluid Mechanics Section of the Office of Naval Research. A detailed study of the formation and collapse of the individual bubbles has been carried on by the use of high-speed motion pictures taken at rates up to 20,000 per sec. From these records calculations have been made of rate of formation and collapse of the bubbles. Deductions have been drawn from these results concerning the physical mechanism of the cavitation phenomenon
    • …
    corecore