19,064 research outputs found

    Undamped nonequilibrium dynamics of a nondegenerate Bose gas in a 3D isotropic trap

    Full text link
    We investigate anomalous damping of the monopole mode of a non-degenerate 3D Bose gas under isotropic harmonic confinement as recently reported by the JILA TOP trap experiment [D. S. Lob- ser, A. E. S. Barentine, E. A. Cornell, and H. J. Lewandowski (in preparation)]. Given a realistic confining potential, we develop a model for studying collective modes that includes the effects of anharmonic corrections to a harmonic potential. By studying the influence of these trap anharmonicities throughout a range of temperatures and collisional regimes, we find that the damping is caused by the joint mechanisms of dephasing and collisional relaxation. Furthermore, the model is complimented by Monte Carlo simulations which are in fair agreement with data from the JILA experiment.Comment: 11 pages, 6 figure

    Analysis of SPAR 8 single-axis levitation experiment

    Get PDF
    The melting and resolidification of SPAR 8 payload melting and resolidification of a glass specimen from the in a containerless condition and the retrieval and examination of the specimen from the. The absence of container contact was assured by use of a single-axis acoustic levitation system. However, the sample contacted a wire cage after being held without container contact by the acoustic field for only approximately 87 seconds. At this time, the sample was still molten and, therefore, flowed aroung the wire and continued to adhere to it. An analysis of why the sample did not remain levitated free of container contact is presented. The experiment is described, and experimental observations are discussed and analyzed

    Water vapor diffusion membranes, 2

    Get PDF
    Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine

    Study of lunar landing sensor performance interim report no. 1

    Get PDF
    Lunar landing sensor performance - characteristics of sensors for beacon and nonbeacon assistanc

    Implications of Lorentz covariance for the guidance equation in two-slit quantum interference

    Full text link
    It is known that Lorentz covariance fixes uniquely the current and the associated guidance law in the trajectory interpretation of quantum mechanics for spin particles. In the non-relativistic domain this implies a guidance law for the electron which differs by an additional spin-dependent term from that originally proposed by de Broglie and Bohm. In this paper we explore some of the implications of the modified guidance law. We bring out a property of mutual dependence in the particle coordinates that arises in product states, and show that the quantum potential has scalar and vector components which implies the particle is subject to a Lorentz-like force. The conditions for the classical limit and the limit of negligible spin are given, and the empirical sufficiency of the model is demonstrated. We then present a series of calculations of the trajectories based on two-dimensional Gaussian wave packets which illustrate how the additional spin-dependent term plays a significant role in structuring both the individual trajectories and the ensemble. The single packet corresponds to quantum inertial motion. The distinct features encountered when the wavefunction is a product or a superposition are explored, and the trajectories that model the two-slit experiment are given. The latter paths exhibit several new characteristics compared with the original de Broglie-Bohm ones, such as crossing of the axis of symmetry.Comment: 27 pages including 6 pages of figure

    HST/STIS Imaging of the Host Galaxy of GRB980425/SN1998bw

    Get PDF
    We present HST/STIS observations of ESO 184-G82, the host galaxy of the gamma-ray burst GRB 980425 associated with the peculiar Type Ic supernova SN1998bw. ESO 184-G82 is found to be an actively star forming SBc sub-luminous galaxy. We detect an object consistent with being a point source within the astrometric uncertainty of 0.018 arcseconds of the position of the supernova. The object is located inside a star-forming region and is at least one magnitude brighter than expected for the supernova based on a simple radioactive decay model. This implies either a significant flattening of the light curve or a contribution from an underlying star cluster.Comment: 12 pages, 2 figures, AASTeX v5.02 accepted for publication in ApJ Letter

    A Model for Hospital Discharge Preparation: From Case Management to Care Transition

    Get PDF
    There has been a proliferation of initiatives to improve discharge processes and outcomes for the transition from hospital to home and community-based care. Operationalization of these processes has varied widely as hospitals have customized discharge care into innovative roles and functions. This article presents a model for conceptualizing the components of hospital discharge preparation to ensure attention to the full range of processes needed for a comprehensive strategy for hospital discharge

    Multi-channel scattering and Feshbach resonances: Effective theory, phenomenology, and many-body effects

    Full text link
    A low energy effective theory based on a microscopic multi-channel description of the atom-atom interaction is derived for the scattering of alkali atoms in different hyperfine states. This theory describes all scattering properties, including medium effects, in terms of the singlet and triplet scattering lengths and the range of the atom-atom potential and provides a link between a microscopic description of Feshbach scattering and more phenomenological approaches. It permits the calculation of medium effects on the resonance coming from the occupation of closed channel states. The examination of such effects are demonstrated to be of particular relevance to an experimentally important Feshbach resonance for 40^{40}K atoms. We analyze a recent rethermalization rate experiment on 40^{40}K and demonstrate that a measurement of the temperature dependence of this rate can determine the magnetic moment of the Feshbach molecule. Finally, the energy dependence of the Feshbach interaction is shown to introduce a negative effective range inversely proportional to the width of the resonance. Since our theory is based on a microscopic multi-channel picture, it allows the explicit calculation of corrections to commonly used approximations such as the neglect of the effective range and the treatment of the Feshbach molecule as a point boson.Comment: 10 pages, 5 figures. Typos corrected. Accepted for PR
    corecore