1,018 research outputs found
Structure and energetics of the Si-SiO_2 interface
Silicon has long been synonymous with semiconductor technology. This unique
role is due largely to the remarkable properties of the Si-SiO_2 interface,
especially the (001)-oriented interface used in most devices. Although Si is
crystalline and the oxide is amorphous, the interface is essentially perfect,
with an extremely low density of dangling bonds or other electrically active
defects. With the continual decrease of device size, the nanoscale structure of
the silicon/oxide interface becomes more and more important. Yet despite its
essential role, the atomic structure of this interface is still unclear. Using
a novel Monte Carlo approach, we identify low-energy structures for the
interface. The optimal structure found consists of Si-O-Si "bridges" ordered in
a stripe pattern, with very low energy. This structure explains several
puzzling experimental observations.Comment: LaTex file with 4 figures in GIF forma
Low-mass e+e- pair production in 158 A GeV Pb-Au collisions at the CERN SPS, its dependence on multiplicity and transverse momentum
We report a measurement of low-mass electron pairs observed in 158
GeV/nucleon Pb-Au collisions. The pair yield integrated over the range of
invariant masses 0.2 < m < 2.0 GeV is enhanced by a factor of 3.5 +/- 0.4
(stat) +/- 0.9 (syst) over the expectation from neutral meson decays. As
observed previously in S-Au collisions, the enhancement is most pronounced in
the invariant-mass region 300-700 MeV. For Pb-Au we find evidence for a strong
increase of the enhancement with centrality. In addition, we show that the
enhancement covers a wide range in transverse momentum, but is largest at the
lowest observed pt.Comment: 17 pages, 4 figures, submitted to Phys.Lett.
Recent results from Pb-Au collisions at 158 GeV/c per nucleon obtained with the CERES spectrometer
During the 1996 lead run time, CERES has accumulated 42 million events,
corresponding to a factor of 5 more statistics than in 1995 and 2.5 million
events of a special photon-run. We report on the results of the low-mass
ee-pair analysis. Since the most critical item is the poor
signal-to-background ratio we also discuss the understanding of this
background, in absolute terms, with the help of a detailed Monte Carlo
simulation. We show preliminary results of the photon analysis and summarize
the results of the hadron analysis preliminarily reported on already at QM'97Comment: 10 pages, 9 figures, Proceedings of the XIV Int. Conf. on
Nucleus-Nucleus Collisions,Quark Matter 99, Torino, Italy, May 10 - 15, 199
e+e--pair production in Pb-Au collisions at 158 GeV per nucleon
We present the combined results on electron-pair production in 158 GeV/n
{Pb-Au} (= 17.2 GeV) collisions taken at the CERN SPS in 1995 and
1996, and give a detailed account of the data analysis. The enhancement over
the reference of neutral meson decays amounts to a factor of 2.31 for semi-central collisions (28%
) when yields are integrated over 200 MeV/ in
invariant mass. The measured yield, its stronger-than-linear scaling with
, and the dominance of low pair strongly suggest an
interpretation as {\it thermal radiation} from pion annihilation in the
hadronic fireball. The shape of the excess centring at 500
MeV/, however, cannot be described without strong medium modifications of
the meson. The results are put into perspective by comparison to
predictions from Brown-Rho scaling governed by chiral symmetry restoration, and
from the spectral-function many-body treatment in which the approach to the
phase boundary is less explicit.Comment: 39 pages, 40 figures, to appear in Eur.Phys.J.C. (2005
Magnetic interactions in EuTe epitaxial layers and EuTe/PbTe superlattices
The magnetic properties of antiferromagnetic (AFM) EuTe epitaxial layers and
short period EuTe/PbTe superlattices (SLs), grown by molecular beam epitaxy on
(111) BaF substrates, were studied by magnetization and neutron diffraction
measurements. Considerable changes of the N\'eel temperature as a function of
the EuTe layer thickness as well as of the strain state were found. A mean
field model, taking into account the variation of the exchange constants with
the strain-induced lattice distortions, and the nearest neighbor environment of
a Eu atoms, was developed to explain the observed changes in wide
range of samples. Pronounced interlayer magnetic correlations have been
revealed by neutron diffraction in EuTe/PbTe SLs with PbTe spacer thickness up
to 60 \AA. The observed diffraction spectra were analyzed, in a kinematical
approximation, assuming partial interlayer correlations characterized by an
appropriate correlation parameter. The formation of interlayer correlations
between the AFM EuTe layers across the nonmagnetic PbTe spacer was explained
within a framework of a tight-binding model. In this model, the interlayer
coupling stems from the dependence of the total electronic energy of the
EuTe/PbTe SL on the spin configurations in adjacent EuTe layers. The influence
of the EuTe and PbTe layer thickness fluctuations, inherent in the epitaxial
growth process, on magnetic properties and interlayer coupling is discussed.Comment: 17 pages, 19 figures, accepted to PR
Gaia Data Release 2: Short-timescale variability processing and analysis
The Gaia DR2 sample of short-timescale variable candidates results from the
investigation of the first 22 months of Gaia photometry for a subsample of
sources at the Gaia faint end. For this exercise, we limited ourselves to the
case of suspected rapid periodic variability. Our study combines
fast-variability detection through variogram analysis, high-frequency search by
means of least-squares periodograms, and empirical selection based on the
investigation of specific sources seen through the Gaia eyes (e.g. known
variables or visually identified objects with peculiar features in their light
curves). The progressive definition and validation of this selection criterion
also benefited from supplementary ground-based photometric monitoring of a few
preliminary candidates, performed at the Flemish Mercator telescope (Canary
Islands, Spain) between August and November 2017. We publish a list of 3,018
short-timescale variable candidates, spread throughout the sky, with a
false-positive rate up to 10-20% in the Magellanic Clouds, and a more
significant but justifiable contamination from longer-period variables between
19% and 50%, depending on the area of the sky. Although its completeness is
limited to about 0.05%, this first sample of Gaia short-timescale variables
recovers some very interesting known short-period variables, such as
post-common envelope binaries or cataclysmic variables, and brings to light
some fascinating, newly discovered variable sources. In the perspective of
future Gaia data releases, several improvements of the short-timescale
variability processing are considered, by enhancing the existing variogram and
period-search algorithms or by classifying the identified candidates.
Nonetheless, the encouraging outcome of our Gaia DR2 analysis demonstrates the
power of this mission for such fast-variability studies, and opens great
perspectives for this domain of astrophysics
A doublet of 3" cylindrical silicon drift detectors in the CERES/NA45 experiment
We report on the performance of a doublet of 3" cylindrical silicon drift detectors installed as an upgrade of the CERES/NA45 electron pair spectrometer for the Pb-beam at the CERN SPS. The silicon detectors provide external particle tracking and background rejection of conversions and close Dalitz pairs. Results on vertex reconstruction and rejection from Pb test-run in 1994 are presented
- …