1,018 research outputs found

    Structure and energetics of the Si-SiO_2 interface

    Full text link
    Silicon has long been synonymous with semiconductor technology. This unique role is due largely to the remarkable properties of the Si-SiO_2 interface, especially the (001)-oriented interface used in most devices. Although Si is crystalline and the oxide is amorphous, the interface is essentially perfect, with an extremely low density of dangling bonds or other electrically active defects. With the continual decrease of device size, the nanoscale structure of the silicon/oxide interface becomes more and more important. Yet despite its essential role, the atomic structure of this interface is still unclear. Using a novel Monte Carlo approach, we identify low-energy structures for the interface. The optimal structure found consists of Si-O-Si "bridges" ordered in a stripe pattern, with very low energy. This structure explains several puzzling experimental observations.Comment: LaTex file with 4 figures in GIF forma

    Low-mass e+e- pair production in 158 A GeV Pb-Au collisions at the CERN SPS, its dependence on multiplicity and transverse momentum

    Full text link
    We report a measurement of low-mass electron pairs observed in 158 GeV/nucleon Pb-Au collisions. The pair yield integrated over the range of invariant masses 0.2 < m < 2.0 GeV is enhanced by a factor of 3.5 +/- 0.4 (stat) +/- 0.9 (syst) over the expectation from neutral meson decays. As observed previously in S-Au collisions, the enhancement is most pronounced in the invariant-mass region 300-700 MeV. For Pb-Au we find evidence for a strong increase of the enhancement with centrality. In addition, we show that the enhancement covers a wide range in transverse momentum, but is largest at the lowest observed pt.Comment: 17 pages, 4 figures, submitted to Phys.Lett.

    Recent results from Pb-Au collisions at 158 GeV/c per nucleon obtained with the CERES spectrometer

    Full text link
    During the 1996 lead run time, CERES has accumulated 42 million events, corresponding to a factor of 5 more statistics than in 1995 and 2.5 million events of a special photon-run. We report on the results of the low-mass e+^+e^--pair analysis. Since the most critical item is the poor signal-to-background ratio we also discuss the understanding of this background, in absolute terms, with the help of a detailed Monte Carlo simulation. We show preliminary results of the photon analysis and summarize the results of the hadron analysis preliminarily reported on already at QM'97Comment: 10 pages, 9 figures, Proceedings of the XIV Int. Conf. on Nucleus-Nucleus Collisions,Quark Matter 99, Torino, Italy, May 10 - 15, 199

    e+e--pair production in Pb-Au collisions at 158 GeV per nucleon

    Get PDF
    We present the combined results on electron-pair production in 158 GeV/n {Pb-Au} (s\sqrt{s}= 17.2 GeV) collisions taken at the CERN SPS in 1995 and 1996, and give a detailed account of the data analysis. The enhancement over the reference of neutral meson decays amounts to a factor of 2.31±0.19(stat.)±0.55(syst.)±0.69(decays)\pm0.19 (stat.)\pm0.55 (syst.)\pm0.69 (decays) for semi-central collisions (28% σ/σgeo\sigma/\sigma_{geo}) when yields are integrated over m>m> 200 MeV/c2c^2 in invariant mass. The measured yield, its stronger-than-linear scaling with NchN_{ch}, and the dominance of low pair ptp_t strongly suggest an interpretation as {\it thermal radiation} from pion annihilation in the hadronic fireball. The shape of the excess centring at mm\approx 500 MeV/c2c^2, however, cannot be described without strong medium modifications of the ρ\rho meson. The results are put into perspective by comparison to predictions from Brown-Rho scaling governed by chiral symmetry restoration, and from the spectral-function many-body treatment in which the approach to the phase boundary is less explicit.Comment: 39 pages, 40 figures, to appear in Eur.Phys.J.C. (2005

    Magnetic interactions in EuTe epitaxial layers and EuTe/PbTe superlattices

    Full text link
    The magnetic properties of antiferromagnetic (AFM) EuTe epitaxial layers and short period EuTe/PbTe superlattices (SLs), grown by molecular beam epitaxy on (111) BaF2_2 substrates, were studied by magnetization and neutron diffraction measurements. Considerable changes of the N\'eel temperature as a function of the EuTe layer thickness as well as of the strain state were found. A mean field model, taking into account the variation of the exchange constants with the strain-induced lattice distortions, and the nearest neighbor environment of a Eu atoms, was developed to explain the observed TNT_{\text N} changes in wide range of samples. Pronounced interlayer magnetic correlations have been revealed by neutron diffraction in EuTe/PbTe SLs with PbTe spacer thickness up to 60 \AA. The observed diffraction spectra were analyzed, in a kinematical approximation, assuming partial interlayer correlations characterized by an appropriate correlation parameter. The formation of interlayer correlations between the AFM EuTe layers across the nonmagnetic PbTe spacer was explained within a framework of a tight-binding model. In this model, the interlayer coupling stems from the dependence of the total electronic energy of the EuTe/PbTe SL on the spin configurations in adjacent EuTe layers. The influence of the EuTe and PbTe layer thickness fluctuations, inherent in the epitaxial growth process, on magnetic properties and interlayer coupling is discussed.Comment: 17 pages, 19 figures, accepted to PR

    Gaia Data Release 2: Short-timescale variability processing and analysis

    Get PDF
    The Gaia DR2 sample of short-timescale variable candidates results from the investigation of the first 22 months of Gaia photometry for a subsample of sources at the Gaia faint end. For this exercise, we limited ourselves to the case of suspected rapid periodic variability. Our study combines fast-variability detection through variogram analysis, high-frequency search by means of least-squares periodograms, and empirical selection based on the investigation of specific sources seen through the Gaia eyes (e.g. known variables or visually identified objects with peculiar features in their light curves). The progressive definition and validation of this selection criterion also benefited from supplementary ground-based photometric monitoring of a few preliminary candidates, performed at the Flemish Mercator telescope (Canary Islands, Spain) between August and November 2017. We publish a list of 3,018 short-timescale variable candidates, spread throughout the sky, with a false-positive rate up to 10-20% in the Magellanic Clouds, and a more significant but justifiable contamination from longer-period variables between 19% and 50%, depending on the area of the sky. Although its completeness is limited to about 0.05%, this first sample of Gaia short-timescale variables recovers some very interesting known short-period variables, such as post-common envelope binaries or cataclysmic variables, and brings to light some fascinating, newly discovered variable sources. In the perspective of future Gaia data releases, several improvements of the short-timescale variability processing are considered, by enhancing the existing variogram and period-search algorithms or by classifying the identified candidates. Nonetheless, the encouraging outcome of our Gaia DR2 analysis demonstrates the power of this mission for such fast-variability studies, and opens great perspectives for this domain of astrophysics

    A doublet of 3" cylindrical silicon drift detectors in the CERES/NA45 experiment

    Get PDF
    We report on the performance of a doublet of 3" cylindrical silicon drift detectors installed as an upgrade of the CERES/NA45 electron pair spectrometer for the Pb-beam at the CERN SPS. The silicon detectors provide external particle tracking and background rejection of conversions and close Dalitz pairs. Results on vertex reconstruction and rejection from Pb test-run in 1994 are presented
    corecore