20 research outputs found

    Identification of the occurrence and pattern of masseter muscle activities during sleep using EMG and accelerometer systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sleep bruxism has been described as a combination of different orofacial motor activities that include grinding, clenching and tapping, although accurate distribution of the activities still remains to be clarified.</p> <p>Methods</p> <p>We developed a new system for analyzing sleep bruxism to examine the muscle activities and mandibular movement patterns during sleep bruxism. The system consisted of a 2-axis accelerometer, electroencephalography and electromyography. Nineteen healthy volunteers were recruited and screened to evaluate sleep bruxism in the sleep laboratory.</p> <p>Results</p> <p>The new system could easily distinguish the different patterns of bruxism movement of the mandible and the body movement. Results showed that grinding (59.5%) was most common, followed by clenching (35.6%) based on relative activity to maximum voluntary contraction (%MVC), whereas tapping was only (4.9%).</p> <p>Conclusion</p> <p>It was concluded that the tapping, clenching, and grinding movement of the mandible could be effectively differentiated by the new system and sleep bruxism was predominantly perceived as clenching and grinding, which varied between individuals.</p

    Ataxin-2 modulates the levels of Grb2 and Src but not Ras signaling

    Get PDF
    Ataxin-2 (ATXN2) is implicated mainly in mRNA processing. Some ATXN2 associates with receptor tyrosine kinases (RTK), inhibiting their endocytic internalization through interaction of proline-rich domains (PRD) in ATXN2 with SH3 motifs in Src. Gain of function of ATXN2 leads to neuronal atrophy in the diseases spinocerebellar ataxia type 2 (SCA2) and amyotrophic lateral sclerosis (ALS). Conversely, ATXN2 knockout (KO) mice show hypertrophy and insulin resistance. To elucidate the influence of ATXN2 on trophic regulation, we surveyed interactions of ATXN2 with SH3 motifs from numerous proteins and observed a novel interaction with Grb2. Direct binding in glutathione S-transferase (GST) pull-down assays and coimmunoprecipitation of the endogenous proteins indicated a physiologically relevant association. In SCA2 patient fibroblasts, Grb2 more than Src protein levels were diminished, with an upregulation of both transcripts suggesting enhanced protein turnover. In KO mouse embryonal fibroblasts (MEF), the protein levels of Grb2 and Src were decreased. ATXN2 absence by itself was insufficient to significantly change Grb2-dependent signaling for endogenous Ras levels, Ras-GTP levels, and kinetics as well as MEK1 phosphorylation, suggesting that other factors compensate for proliferation control. In KO tissue with postmitotic neurons, a significant decrease of Src protein levels is prominent rather than Grb2. ATXN2 mutations modulate the levels of several components of the RTK endocytosis complex and may thus contribute to alter cell proliferation as well as translation and growth
    corecore