129 research outputs found
Noncommutative fluid dynamics in the K\"{a}hler parametrization
In this paper, we propose a first order action functional for a large class
of systems that generalize the relativistic perfect fluids in the K\"{a}hler
parametrization to noncommutative spacetimes. We calculate the equations of
motion for the fluid potentials and the energy-momentum tensor in the first
order in the noncommutative parameter. The density current does not receive any
noncommutative corrections and it is conserved under the action of the
commutative generators but the energy-momentum tensor is not.
Therefore, we determine the set of constraints under which the energy-momentum
tensor is divergenceless. Another set of constraints on the fluid potentials is
obtained from the requirement of the invariance of the action under the
generalization of the volume preserving transformations of the noncommutative
spacetime. We show that the proposed action describes noncommutative fluid
models by casting the energy-momentum tensor in the familiar fluid form and
identifying the corresponding energy and momentum densities. In the commutative
limit, they are identical to the corresponding quantities of the relativistic
perfect fluids. The energy-momentum tensor contains a dissipative term that is
due to the noncommutative spacetime and vanishes in the commutative limit.
Finally, we particularize the theory to the case when the complex fluid
potentials are characterized by a function that is a deformation
of the complex plane and show that this model has important common features
with the commutative fluid such as infinitely many conserved currents and a
conserved axial current that in the commutative case is associated to the
topologically conserved linking number.Comment: References fixed. Typos corrected. 12 page
Ensemble density-functional theory for ab-initio molecular dynamics of metals and finite-temperature insulators
A new method is presented for performing first-principles molecular-dynamics
simulations of systems with variable occupancies. We adopt a matrix
representation for the one-particle statistical operator Gamma, to introduce a
``projected'' free energy functional G that depends on the Kohn-Sham orbitals
only and that is invariant under their unitary transformations. The Liouville
equation [ Gamma , H ] = 0 is always satisfied, guaranteeing a very efficient
and stable variational minimization algorithm that can be extended to
non-conventional entropic formulations or fictitious thermal distributions.Comment: 5 pages, two-column style with 2 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#nm_meta
Electronic Structure of Dangling Bonds in Amorphous Silicon Studied via a Density-Matrix Functional Method
A structural model of hydrogenated amorphous silicon containing an isolated
dangling bond is used to investigate the effects of electron interactions on
the electronic level splittings, localization of charge and spin, and
fluctuations in charge and spin. These properties are calculated with a
recently developed density-matrix correlation-energy functional applied to a
generalized Anderson Hamiltonian, consisting of tight-binding one-electron
terms parametrizing hydrogenated amorphous silicon plus a local interaction
term. The energy level splittings approach an asymptotic value for large values
of the electron-interaction parameter U, and for physically relevant values of
U are in the range 0.3-0.5 eV. The electron spin is highly localized on the
central orbital of the dangling bond while the charge is spread over a larger
region surrounding the dangling bond site. These results are consistent with
known experimental data and previous density-functional calculations. The spin
fluctuations are quite different from those obtained with unrestricted
Hartree-Fock theory.Comment: 6 pages, 6 figures, 1 tabl
Composition Dependence of the Structure and Electronic Properties of Liquid Ga-Se Alloys Studied by Ab Initio Molecular Dynamics Simulation
Ab initio molecular dynamics simulation is used to study the structure and
electronic properties of the liquid Ga-Se system at the three compositions
GaSe, GaSe and GaSe, and of the GaSe and GaSe crystals. The
calculated equilibrium structure of GaSe crystal agrees well with available
experimental data. The neutron-weighted liquid structure factors calculated
from the simulations are in reasonable agreement with recent neutron
diffraction measurements. Simulation results for the partial radial
distribution functions show that the liquid structure is closely related to
that of the crystals. A close similarity between solid and liquid is also found
for the electronic density of states and charge density. The calculated
electronic conductivity decreases strongly with increasing Se content, in
accord with experimental measurements.Comment: REVTeX, 8 pages and 12 uuencoded PostScript figures, submitted to
Phys. Rev. B. corresponding author: [email protected]
The Structure, Dynamics and Electronic Structure of Liquid Ag-Se Alloys Investigated by Ab Initio Simulation
Ab initio molecular-dynamics simulations have been used to investigate the
structure, dynamics and electronic properties of the liquid alloy Ag(1-x)Se(x)
at 1350 K and at the three compositions x=0.33, 0.42 and 0.65. The calculations
are based on density-functional theory in the local density approximation and
on the pseudopotential plane-wave method. The reliability of the simulations is
confirmed by detailed comparisons with very recent neutron diffraction results
for the partial structure factors and radial distribution functions (RDF) of
the stoichiometric liquid Ag2Se. The simulations show a dramatic change of the
Se-Se RDF with increasing Se content. This change is due to the formation of Se
clusters bound by covalent bonds, the Se-Se bond length being almost the same
as in pure c-Se and l-Se. The clusters are predominantly chain-like, but for
higher x a large fraction of 3-fold coordinated Se atoms is also found. It is
shown that the equilibrium fractions of Se present as isolated atoms and in
clusters can be understood on a simple charge-balance model based on an ionic
interpretation. The Ag and Se diffusion coefficients both increase with Se
content, in spite of the Se clustering. An analysis of the Se-Se bond dynamics
reveals surprisingly short bond lifetimes of less than 1 ps. The changes in the
density of states with composition arise directly from the formation of Se-Se
covalent bonds. Results for the electronic conductivity obtained using the
Kubo-Greenwood approximation are in adequate agreement with experiment for
l-Ag2Se, but not for the high Se contents. Possible reasons for this are
discussed.Comment: 14 pages, Revtex, 14 Postscript figures embedded in the tex
Towards device-size atomistic models of amorphous silicon
The atomic structure of amorphous materials is believed to be well described
by the continuous random network model. We present an algorithm for the
generation of large, high-quality continuous random networks. The algorithm is
a variation of the "sillium" approach introduced by Wooten, Winer, and Weaire.
By employing local relaxation techniques, local atomic rearrangements can be
tried that scale almost independently of system size. This scaling property of
the algorithm paves the way for the generation of realistic device-size atomic
networks.Comment: 7 pages, 3 figure
Reverse Monte Carlo modeling of amorphous silicon
An implementation of the Reverse Monte Carlo algorithm is presented for the
study of amorphous tetrahedral semiconductors. By taking into account a number
of constraints that describe the tetrahedral bonding geometry along with the
radial distribution function, we construct a model of amorphous silicon using
the reverse monte carlo technique. Starting from a completely random
configuration, we generate a model of amorphous silicon containing 500 atoms
closely reproducing the experimental static structure factor and bond angle
distribution and in improved agreement with electronic properties. Comparison
is made to existing Reverse Monte Carlo models, and the importance of suitable
constraints beside experimental data is stressed.Comment: 6 pages, 4 PostScript figure
The Validity of d′ Measures
Subliminal perception occurs when prime stimuli that participants claim not to be aware of nevertheless influence subsequent processing of a target. This claim, however, critically depends on correct methods to assess prime awareness. Typically, d′ (“d prime”) tasks administered after a priming task are used to establish that people are unable to discriminate between different primes. Here, we show that such d′ tasks are influenced by the nature of the target, by attentional factors, and by the delay between stimulus presentation and response. Our results suggest that the standard d′ task is not a straightforward measure of prime visibility. We discuss the implications of our findings for subliminal perception research
Systematic Study of Electron Localization in an Amorphous Semiconductor
We investigate the electronic structure of gap and band tail states in
amorphous silicon. Starting with two 216-atom models of amorphous silicon with
defect concentration close to the experiments, we systematically study the
dependence of electron localization on basis set, density functional and spin
polarization using the first principles density functional code Siesta. We
briefly compare three different schemes for characterizing localization:
information entropy, inverse participation ratio and spatial variance. Our
results show that to accurately describe defect structures within self
consistent density functional theory, a rich basis set is necessary. Our study
revealed that the localization of the wave function associated with the defect
states decreases with larger basis sets and there is some enhancement of
localization from GGA relative to LDA. Spin localization results obtained via
LSDA calculations, are in reasonable agreement with experiment and with
previous LSDA calculations on a-Si:H models.Comment: 16 pages, 11 Postscript figures, To appear in Phys. Rev.
- …