107 research outputs found
Filament behavior in a computational model of ventricular fibrillation in the canine heart
The aim of this paper was to quantify the behavior of filaments in a computational model of re-entrant ventricular fibrillation. We simulated cardiac activation in an anisotropic monodomain with excitation described by the Fenton-Karma model with Beeler-Reuter restitution, and geometry by the Auckland canine ventricle. We initiated re-entry in the left and right ventricular free walls, as well as the septum. The number of filaments increased during the first 1.5 s before reaching a plateau with a mean value of about 36 in each simulation. Most re-entrant filaments were between 10 and 20 mm long. The proportion of filaments touching the epicardial surface was 65%, but most of these were visible for much less than one period of re-entry. This paper shows that useful information about filament dynamics can be gleaned from models of fibrillation in complex geometries, and suggests that the interplay of filament creation and destruction may offer a target for antifibrillatory therap
Dispersion of cardiac action potential duration and the initiation of re-entry: A computational study
BACKGROUND:
The initiation of re-entrant cardiac arrhythmias is associated with increased dispersion of repolarisation, but the details are difficult to investigate either experimentally or clinically. We used a computational model of cardiac tissue to study systematically the association between action potential duration (APD) dispersion and susceptibility to re-entry.
METHODS:
We simulated a 60 × 60 mm 2 D sheet of cardiac ventricular tissue using the Luo-Rudy phase 1 model, with maximal conductance of the K+ channel gKmax set to 0.004 mS mm-2. Within the central 40 × 40 mm region we introduced square regions with prolonged APD by reducing gKmax to between 0.001 and 0.003 mS mm-2. We varied (i) the spatial scale of these regions, (ii) the magnitude of gKmax in these regions, and (iii) cell-to-cell coupling.
RESULTS:
Changing spatial scale from 5 to 20 mm increased APD dispersion from 49 to 102 ms, and the susceptible window from 31 to 86 ms. Decreasing gKmax in regions with prolonged APD from 0.003 to 0.001 mS mm-2 increased APD dispersion from 22 to 70 ms, and the susceptible window from <1 to 56 ms. Decreasing cell-to-cell coupling by changing the diffusion coefficient from 0.2 to 0.05 mm2 ms-1 increased APD dispersion from 57 to 88 ms, and increased the susceptible window from 41 to 74 ms.
CONCLUSION:
We found a close association between increased APD dispersion and susceptibility to re-entrant arrhythmias, when APD dispersion is increased by larger spatial scale of heterogeneity, greater electrophysiological heterogeneity, and weaker cell-to-cell coupling
Endogenous driving and synchronization in cardiac and uterine virtual tissues: bifurcations and local coupling
Cardiac and uterine muscle cells and tissue can be either autorhythmic or excitable. These behaviours exchange stability at bifurcations produced by changes in parameters, which if spatially localized can produce an ectopic pacemaking focus. The effects of these parameters on cell dynamics have been identified and quantified using continuation algorithms and by numerical solutions of virtual cells. The ability of a compact pacemaker to drive the surrounding excitable tissues depends on both the size of the pacemaker and the strength of electrotonic coupling between cells within, between, and outside the pacemaking region.
We investigate an ectopic pacemaker surrounded by normal excitable tissue. Cell–cell coupling is simulated by the diffusion coefficient for voltage. For uniformly coupled tissues, the behaviour of the hybrid tissue can take one of the three forms: (i) the surrounding tissue electrotonically suppresses the pacemaker; (ii) depressed rate oscillatory activity in the pacemaker but no propagation; and (iii) pacemaker driving propagations into the excitable region.
However, real tissues are heterogeneous with spatial changes in cell–cell coupling. In the gravid uterus during early pregnancy, cells are weakly coupled, with the cell–cell coupling increasing during late pregnancy, allowing synchronous contractions during labour. These effects are investigated for a caricature uterine tissue by allowing both excitability and diffusion coefficient to vary stochastically with space, and for cardiac tissues by spatial gradients in the diffusion coefficient
Approximate tight-binding sum rule for the superconductivity related change of c-axis kinetic energy in multilayer cuprate superconductors
We present an extension of the c-axis tight-binding sum rule discussed by
Chakravarty, Kee, and Abrahams [Phys. Rev. Lett. 82, 2366 (1999)] that applies
to multilayer high-Tc cuprate superconductors (HTCS) and use it to
estimate--from available infrared data--the change below Tc of the c-axis
kinetic energy, Hc, in YBa2Cu3O(7-delta) (delta=0.45,0.25,0.07), Bi2Sr2CaCu2O8,
and Bi2Sr2Ca2Cu3O10. In all these compounds Hc decreases below Tc and except
for Bi2Sr2CaCu2O8 the change of Hc is of the same order of magnitude as the
condensation energy. This observation supports the hypothesis that in
multilayer HTCS superconductivity is considerably amplified by the interlayer
tunnelling mechanism.Comment: 6 pages, 2 figure
Dynamic Front Transitions and Spiral-Vortex Nucleation
This is a study of front dynamics in reaction diffusion systems near
Nonequilibrium Ising-Bloch bifurcations. We find that the relation between
front velocity and perturbative factors, such as external fields and curvature,
is typically multivalued. This unusual form allows small perturbations to
induce dynamic transitions between counter-propagating fronts and nucleate
spiral vortices. We use these findings to propose explanations for a few
numerical and experimental observations including spiral breakup driven by
advective fields, and spot splitting
Synthesizing attractors of Hindmarsh-Rose neuronal systems
In this paper a periodic parameter switching scheme is applied to the
Hindmarsh-Rose neuronal system to synthesize certain attractors. Results show
numerically, via computer graphic simulations, that the obtained synthesized
attractor belongs to the class of all admissible attractors for the
Hindmarsh-Rose neuronal system and matches the averaged attractor obtained with
the control parameter replaced with the averaged switched parameter values.
This feature allows us to imagine that living beings are able to maintain vital
behavior while the control parameter switches so that their dynamical behavior
is suitable for the given environment.Comment: published in Nonlinear Dynamic
NUP-1 Is a Large Coiled-Coil Nucleoskeletal Protein in Trypanosomes with Lamin-Like Functions
NUP1, the first example of a nuclear lamin analog in nonmetazoans, performs roles similar to those of lamins in maintaining the structure and organization of the nucleus in Trypanosoma brucei
C-axis lattice dynamics in Bi-based cuprate superconductors
We present results of a systematic study of the c axis lattice dynamics in
single layer Bi2Sr2CuO6 (Bi2201), bilayer Bi2Sr2CaCu2O8 (Bi2212) and trilayer
Bi2Sr2Ca2Cu3O10 (Bi2223) cuprate superconductors. Our study is based on both
experimental data obtained by spectral ellipsometry on single crystals and
theoretical calculations. The calculations are carried out within the framework
of a classical shell model, which includes long-range Coulomb interactions and
short-range interactions of the Buckingham form in a system of polarizable
ions. Using the same set of the shell model parameters for Bi2201, Bi2212 and
Bi2223, we calculate the frequencies of the Brillouin-zone center phonon modes
of A2u symmetry and suggest the phonon mode eigenvector patterns. We achieve
good agreement between the calculated A2u eigenfrequencies and the experimental
values of the c axis TO phonon frequencies which allows us to make a reliable
phonon mode assignment for all three Bi-based cuprate superconductors. We also
present the results of our shell model calculations for the Gamma-point A1g
symmetry modes in Bi2201, Bi2212 and Bi2223 and suggest an assignment that is
based on the published experimental Raman spectra. The
superconductivity-induced phonon anomalies recently observed in the c axis
infrared and resonant Raman scattering spectra in trilayer Bi2223 are
consistently explained with the suggested assignment.Comment: 29 pages, 13 figure
Analytically Solvable Asymptotic Model of Atrial Excitability
We report a three-variable simplified model of excitation fronts in human
atrial tissue. The model is derived by novel asymptotic techniques \new{from
the biophysically realistic model of Courtemanche et al (1998) in extension of
our previous similar models. An iterative analytical solution of the model is
presented which is in excellent quantitative agreement with the realistic
model. It opens new possibilities for analytical studies as well as for
efficient numerical simulation of this and other cardiac models of similar
structure
- …