17 research outputs found

    αE-catenin-dependent mechanotransduction is essential for proper convergent extension in zebrafish

    Get PDF
    Cadherin complexes mediate cell-cell adhesion and are crucial for embryonic development. Besides their structural function, cadherin complexes also transduce tension across the junction-actomyosin axis into proportional biochemical responses. Central to this mechanotransduction is the stretching of the cadherin-F-actin-linker α-catenin, which opens its central domain for binding to effectors such as vinculin. Mechanical unfolding of α -catenin leads to force-dependent reinforcement of cadherin-based junctions as studied in cell culture. The importance of cadherin mechanotransduction for embryonic development has not been studied yet. Here we used TALEN-mediated gene disruption to perturb endogenous αE-catenin in zebrafish development. Zygotic α-catenin mutants fail to maintain their epithelial barrier, resulting in tissue rupturing. We then specifically disrupted mechanotransduction, while maintaining cadherin adhesion, by expressing an αE-catenin construct in which the mechanosensitive domain was perturbed. Expression of either wild-type or mechano-defective α-catenin fully rescues barrier function in α-catenin mutants. Expression of mechano-defective α-catenin, however, also induces convergence and extension defects. Specifically, the polarization of cadherin-dependent, lamellipodia-driven cell migration of the lateral mesoderm was lost. These results indicate that cadherin mechanotransduction is crucial for proper zebrafish morphogenesis and uncover one of the essential processes affected by its perturbation

    Cooperative epithelial phagocytosis enables error correction in the early embryo

    Get PDF
    Errors in early embryogenesis are a cause of sporadic cell death and developmental failure1,2. Phagocytic activity has a central role in scavenging apoptotic cells in differentiated tissues3-6. However, how apoptotic cells are cleared in the blastula embryo in the absence of specialized immune cells remains unknown. Here we show that the surface epithelium of zebrafish and mouse embryos, which is the first tissue formed during vertebrate development, performs efficient phagocytic clearance of apoptotic cells through phosphatidylserine-mediated target recognition. Quantitative four-dimensional in vivo imaging analyses reveal a collective epithelial clearance mechanism that is based on mechanical cooperation by two types of Rac1-dependent basal epithelial protrusions. The first type of protrusion, phagocytic cups, mediates apoptotic target uptake. The second, a previously undescribed type of fast and extended actin-based protrusion that we call 'epithelial arms', promotes the rapid dispersal of apoptotic targets through Arp2/3-dependent mechanical pushing. On the basis of experimental data and modelling, we show that mechanical load-sharing enables the long-range cooperative uptake of apoptotic cells by multiple epithelial cells. This optimizes the efficiency of tissue clearance by extending the limited spatial exploration range and local uptake capacity of non-motile epithelial cells. Our findings show that epithelial tissue clearance facilitates error correction that is relevant to the developmental robustness and survival of the embryo, revealing the presence of an innate immune function in the earliest stages of embryonic development

    Sequential formation and resolution of multiple rosettes drive embryo remodelling after implantation

    Get PDF
    The morphogenetic remodelling of embryo architecture after implantation culminates in pro-amniotic cavity formation. Despite its key importance, how this transformation occurs remains unknown. Here, we apply high-resolution imaging of embryos developing in vivo and in vitro, spatial RNA sequencing and 3D trophoblast stem cell models to determine the sequence and mechanisms of these remodelling events. We show that cavitation of the embryonic tissue is followed by folding of extra-embryonic tissue to mediate the formation of a second extra-embryonic cavity. Concomitantly, at the boundary between embryonic and extra-embryonic tissues, a hybrid 3D rosette forms. Resolution of this rosette enables the embryonic cavity to invade the extra-embryonic tissue. Subsequently, β1-integrin signalling mediates the formation of multiple extra-embryonic 3D rosettes. Podocalyxin exocytosis leads to their polarized resolution, permitting the extension of embryonic and extra-embryonic cavities and their fusion into a unified pro-amniotic cavity. These morphogenetic transformations of embryogenesis reveal a previously unappreciated mechanism for lumen expansion and fusionThe M.Z.G lab is supported by grants from the European Research Council (669198) and the Welcome Trust (098287/Z/12/Z) and the EU Horizon 2020 Marie Sklodowska-Curie actions (ImageInLife,721537). C.K is supported by BBSRC Doctoral training studentship

    Coupling changes in cell shape to chromosome segregation

    Get PDF
    Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell–substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance

    Involvement of Bax protein in the prevention of glucocorticoid-induced thymocytes apoptosis by melatonin

    Full text link
    The antiapoptotic effect of melatonin has been described in several systems. In this study, the antagonistic effect of the methoxyindole on dexamethasone-induced apoptosis in mouse thymocytes was examined. Melatonin decreased both DNA fragmentation, and the number of annexin V-positive cells incubated in the presence of dexamethasone. Analysis of the expression of the members of the Bcl-2 family indicated that the synthetic glucocorticoid increased Bax protein levels without affecting the levels of Bcl-2, Bcl-XL, Bcl-XS, or Bak. This effect correlated with an increase in thymocytes bax mRNA levels. Dexamethasone also increased the release of cytochrome C from mitochondria. All of these effects were reduced in the presence of melatonin, which was ineffective per se on these parameters. In addition, the involvement of cAMP on glucocorticoid/melatonin antagonism was examined. Both melatonin and dexamethasone decreased the levels of this nucleotide in mouse thymocytes, indicating that the antagonistic action between both hormones involves a cAMP-independent pathway. In summary, the present results suggest that the antiapoptotic effect of melatonin on glucocorticoid-treated thymocytes would be a consequence of an inhibition of the mitochondrial pathway, presumably through the regulation of Bax protein levels

    Therapeutic benefit of melatonin in refractory central serous chorioretinopathy

    Get PDF
    PURPOSE: To evaluate the efficacy and safety of melatonin for the treatment of chronic central serous chorioretinopathy (CSCR). METHODS: Prospective comparative case series. A total of 13 patients with chronic CSCR were treated for 1 month: 8 patients were treated orally with 3 mg melatonin t.i.d., and 5 with placebo. All patients had 20/40 or worse Early Treatment Diabetic Retinopathy Study (ETDRS) best-corrected visual acuity (BCVA) in the affected eye or presented an incapacitating scotoma. Most of the patients had previous failed treatments for their condition. Observational procedures included ETDRS BCVA, and complete ophthalmic examination. Optical coherence tomography (OCT) was performed at day 1 and week 4. Fluorescein angiography was performed at baseline only for diagnostic purposes. Data were subjected to two-sample t-test statistical analysis. P-values of <0.05 were considered statistically significant. RESULTS: At 1-month follow-up, BCVA significantly improved in 87.5% of patients treated with melatonin (7 of 8 patients, P<0.05). All patients showed a mean significant reduction (P<0.01) of central macular thickness (CMT) when compared with the baseline, with 3 patients (37.5%) exhibiting complete resolution of subretinal fluid at 1-month follow-up. No significant side effects were observed. No changes in BCVA or CMT were noted in the control group. CCONCLUSIONS: These results suggest that melatonin is safe, well tolerated, and effective in the treatment of chronic CSCR, as it significantly improved BCVA and CMT in patients with this pathology. Further evaluations with longer follow-up and a larger patient population are desirable.Fil: Gramajo, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundacion Ver; ArgentinaFil: Marquez, G. E.. Fundacion Ver; ArgentinaFil: Torres, Victor Eduardo Roque. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones y Estudio sobre Cultura y Sociedad; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Económicas; ArgentinaFil: Juarez, Cecilia Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundacion Ver; ArgentinaFil: Rosenstein, Ruth Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Laboratorio de Neuroquímica Retiniana y Oftalmología Experimental; ArgentinaFil: Luna, J. D.. Fundacion Ver; Argentin
    corecore