16 research outputs found
Femto-Photography of Protons to Nuclei with Deeply Virtual Compton Scattering
Developments in deeply virtual Compton scattering allow the direct
measurements of scattering amplitudes for exchange of a highly virtual photon
with fine spatial resolution. Real-space images of the target can be obtained
from this information. Spatial resolution is determined by the momentum
transfer rather than the wavelength of the detected photon. Quantum photographs
of the proton, nuclei, and other elementary particles with resolution on the
scale of a fraction of a femtometer is feasible with existing experimental
technology.Comment: To be published in Physical Review D. Replaces previous version with
minor changes in presentatio
Guiding center picture of magnetoresistance oscillations in rectangular superlattices
We calculate the magneto-resistivities of a two-dimensional electron gas
subjected to a lateral superlattice (LSL) of rectangular symmetry within the
guiding-center picture, which approximates the classical electron motion as a
rapid cyclotron motion around a slowly drifting guiding center. We explicitly
evaluate the velocity auto-correlation function along the trajectories of the
guiding centers, which are equipotentials of a magnetic-field dependent
effective LSL potential. The existence of closed equipotentials may lead to a
suppression of the commensurability oscillations, if the mean free path and the
LSL modulation potential are large enough. We present numerical and analytical
results for this suppression, which allow, in contrast to previous quantum
arguments, a classical explanation of similar suppression effects observed
experimentally on square-symmetric LSL. Furthermore, for rectangular LSLs of
lower symmetry they lead us to predict a strongly anisotropic resistance
tensor, with high- and low-resistance directions which can be interchanged by
tuning the externally applied magnetic field.Comment: 12 pages, 9 figure
Inverse flux quantum periodicity of magnetoresistance oscillations in two-dimensional short-period surface superlattices
Transport properties of the two-dimensional electron gas (2DEG) are
considered in the presence of a perpendicular magnetic field and of a {\it
weak} two-dimensional (2D) periodic potential modulation in the 2DEG plane. The
symmetry of the latter is rectangular or hexagonal. The well-known solution of
the corresponding tight-binding equation shows that each Landau level splits
into several subbands when a rational number of flux quanta pierces the
unit cell and that the corresponding gaps are exponentially small. Assuming the
latter are closed due to disorder gives analytical wave functions and
simplifies considerably the evaluation of the magnetoresistivity tensor
. The relative phase of the oscillations in and
depends on the modulation periods involved. For a 2D modulation
with a {\bf short} period nm, in addition to the Weiss oscillations
the collisional contribution to the conductivity and consequently the tensor
show {\it prominent peaks when one flux quantum passes
through an integral number of unit cells} in good agreement with recent
experiments. For periods nm long used in early experiments, these
peaks occur at fields 10-25 times smaller than those of the Weiss oscillations
and are not resolved
Quantifying the levitation picture of extended states in lattice models
The behavior of extended states is quantitatively analyzed for two
dimensional lattice models. A levitation picture is established for both
white-noise and correlated disorder potentials. In a continuum limit window of
the lattice models we find simple quantitative expressions for the extended
states levitation, suggesting an underlying universal behavior. On the other
hand, these results point out that the Quantum Hall phase diagrams may be
disorder dependent.Comment: 5 pages, submitted to PR
Recommended from our members
AIRS/AMSU/HSB validation
The Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit/Humidity Sounder for Brazil (AIRS/AMSU/HSB) instrument suite onboard Aqua observes infrared and microwave radiances twice daily over most of the planet. AIRS offers unprecedented radiometric accuracy and signal to noise throughout the thermal infrared. Observations from the combined suite of AIRS, AMSU, and HSB are processed into retrievals of atmospheric parameters such as temperature, water vapor, and trace gases under all but the cloudiest conditions. A more limited retrieval set based on the microwave radiances is obtained under heavy cloud cover. Before measurements and retrievals from AIRS/AMSU/HSB instruments can be fully utilized they must be compared with the best possible in situ and other ancillary "truth" observations. Validation is the process of estimating the measurement and retrieval uncertainties through comparison with a set of correlative data of known uncertainties. The ultimate goal of the validation effort is retrieved product uncertainties constrained to those of radiosondes: tropospheric rms uncertainties of 1.0 degC over a 1-km layer for temperature, and 10% over 2-km layers for water vapor. This paper describes the data sources and approaches to be used for validation of the AIRS/AMSU/HSB instrument suite, including validation of the forward models necessary for calculating observed radiances, validation of the observed radiances themselves, and validation of products retrieved from the observed radiances. Constraint of the AIRS product uncertainties to within the claimed specification of 1 K/1 km over well-instrumented regions is feasible within 12 months of launch, but global validation of all AIRS/AMSU/HSB products may require considerably more time due to the novelty and complexity of this dataset and the sparsity of some types of correlative observations