8 research outputs found

    Seasonal dynamics and exports of elements from a first‐order stream to a large inland lake in Michigan

    Full text link
    Headwater streams are critical components of drainage systems, directly connecting terrestrial and downstream aquatic ecosystems. The amount of water in a stream can alter hydrologic connectivity between the stream and surrounding landscape and is ultimately an important driver of what constituents headwater streams transport. There is a shortage of studies that explore concentration–discharge (C‐Q) relationships in headwater systems, especially forested watersheds, where the hydrological and ecological processes that control the processing and export of solutes can be directly investigated. We sought to identify the temporal dynamics and spatial patterns of stream chemistry at three points along a forested headwater stream in Northern Michigan and utilize C‐Q relationships to explore transport dynamics and potential sources of solutes in the stream. Along the stream, surface flow was seasonal in the main stem, and perennial flow was spatially discontinuous for all but the lowest reaches. Spring snowmelt was the dominant hydrological event in the year with peak flows an order of magnitude larger at the mouth and upper reaches than annual mean discharge. All three C‐Q shapes (positive, negative, and flat) were observed at all locations along the stream, with a higher proportion of the analytes showing significant relationships at the mouth than at the mid or upper flumes. At the mouth, positive (flushing) C‐Q shapes were observed for dissolved organic carbon and total suspended solids, whereas negative (dilution) C‐Q shapes were observed for most cations (Na+, Mg2+, Ca2+) and biologically cycled anions (NO3−, PO43−, SO42−). Most analytes displayed significant C‐Q relationships at the mouth, indicating that discharge is a significant driving factor controlling stream chemistry. However, the importance of discharge appeared to decrease moving upstream to the headwaters where more localized or temporally dynamic factors may become more important controls on stream solute patterns.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149221/1/hyp13416.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149221/2/hyp13416_am.pd

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    The Identification, Mapping, and Management of Seasonal Ponds in Forests of the Great Lakes Region

    No full text
    Seasonal ponds are small, isolated wetlands with variable hydrology, often occurring embedded in upland forests, which provide habitat for amphibians and invertebrates uniquely adapted to fishless waters. Seasonal ponds are challenging to identify due to their small size, ephemeral hydrology, diverse vegetation, and occurrence across a range of settings, yet in order to inform their conservation and management, it is essential to understand their distribution and how management impacts them. We conducted a systematic review to define and quantify attributes of seasonal ponds, summarize mapping and inventory methods, and synthesize forest harvesting impacts on ponds in the western Great Lakes and northeastern United States. Definitions of seasonal ponds differ regionally and for scientific vs. regulatory purposes; the necessity of documenting pond-dependent indicator species (e.g., fairy shrimp) is one of the most vexing inconsistencies. Seasonal ponds are most effectively mapped in the spring, using a combination of aerial photographs or radar imagery and topographic information, especially in settings with small ponds or heavy canopies. Combining these mapping efforts with carefully stratified field validation is essential for developing a regional inventory of seasonal ponds. Most guidelines intended to reduce impacts of forest harvesting on pond ecosystems rely on buffers, which most effectively minimize physical or biological impacts when most lightly treated, although some impacts (particularly water levels) appear unavoidable when any harvesting occurs adjacent to seasonal ponds. Overall, distinct physical and biological impacts of harvesting differ in magnitude and direction, though most appear to subside over multi-decadal timescales
    corecore