4 research outputs found
Earthquake research in China
A visit to China of an American seismological delegation, which took place October 5 to November 5, 1974, is covered in this report. The Americans were sponsored by the Committee on Scholarly Communication with the People's Republic of China (CSCPRC), and the hosts in China were the Scientific and Technical Association and the State Seismological Bureau. The CSCPRC is sponsored jointly by the National Academy of Sciences, the Social Science Research Council, and the American Council of Learned Societies.
The visit had its origins in an invitation extended in January 1973 by Carl Kisslinger, as President of the Seismological Society of America, to the Chinese Academy of Sciences to send representatives to a Symposium on Earthquake Prediction Research. Although the Chinese declined to participate, this invitation was one step towards a reciprocal exchange of seismologists between the United States and the People's Republic of China. Several months after Kisslinger's letter the CSCPRC visited Peking. Their purpose was to arrange an exchange program with the Chinese Scientific and Technical Association. Prompted by Kisslinger, the committee's proposals for American delegations included seismology. Not only was this particular exchange accepted, but the Chinese in turn suggested that a Chinese seismology group visit the United States
Quantum wave mixing and visualisation of coherent and superposed photonic states in a waveguide
Superconducting quantum systems (artificial atoms) have been recently
successfully used to demonstrate on-chip effects of quantum optics with single
atoms in the microwave range. In particular, a well-known effect of four-wave
mixing could reveal a series of features beyond classical physics, when a
non-linear medium is scaled down to a single quantum scatterer. Here we
demonstrate a phenomenon of the quantum wave mixing (QWM) on a single
superconducting artificial atom. In the QWM, the spectrum of elastically
scattered radiation is a direct map of the interacting superposed and coherent
photonic states. Moreover, the artificial atom visualises photon-state
statistics, distinguishing coherent, one- and two-photon superposed states with
the finite (quantized) number of peaks in the quantum regime. Our results may
give a new insight into nonlinear quantum effects in microwave optics with
artificial atoms.Comment: 6 pages, 5 figures; accepted versio