27,494 research outputs found
kmos: A lattice kinetic Monte Carlo framework
Kinetic Monte Carlo (kMC) simulations have emerged as a key tool for
microkinetic modeling in heterogeneous catalysis and other materials
applications. Systems, where site-specificity of all elementary reactions
allows a mapping onto a lattice of discrete active sites, can be addressed
within the particularly efficient lattice kMC approach. To this end we describe
the versatile kmos software package, which offers a most user-friendly
implementation, execution, and evaluation of lattice kMC models of arbitrary
complexity in one- to three-dimensional lattice systems, involving multiple
active sites in periodic or aperiodic arrangements, as well as site-resolved
pairwise and higher-order lateral interactions. Conceptually, kmos achieves a
maximum runtime performance which is essentially independent of lattice size by
generating code for the efficiency-determining local update of available events
that is optimized for a defined kMC model. For this model definition and the
control of all runtime and evaluation aspects kmos offers a high-level
application programming interface. Usage proceeds interactively, via scripts,
or a graphical user interface, which visualizes the model geometry, the lattice
occupations and rates of selected elementary reactions, while allowing
on-the-fly changes of simulation parameters. We demonstrate the performance and
scaling of kmos with the application to kMC models for surface catalytic
processes, where for given operation conditions (temperature and partial
pressures of all reactants) central simulation outcomes are catalytic activity
and selectivities, surface composition, and mechanistic insight into the
occurrence of individual elementary processes in the reaction network.Comment: 21 pages, 12 figure
The state space of short-range Ising spin glasses: the density of states
The state space of finite square and cubic Ising spin glass models is
analysed in terms of the global and the local density of states. Systems with
uniform and gaussian probability distribution of interactions are compared.
Different measures for the local state density are presented and discussed. In
particular the question whether the local density of states grows exponentially
or not is considered. The direct comparison of global and local densities leads
to consequences for the structure of the state space.Comment: 18 pages (including 6 figures); submitted to Z.f.Physik
Reweighting towards the chiral limit
We propose to perform fully dynamical simulations at small quark masses by
reweighting in the quark mass. This approach avoids some of the technical
difficulties associated with direct simulations at very small quark masses. We
calculate the weight factors stochastically, using determinant breakup and low
mode projection to reduce the statistical fluctuations. We find that the weight
factors fluctuate only moderately on nHYP smeared dynamical Wilson-clover
ensembles, and we could successfully reweight 16^4, (1.85fm)^4 volume
configurations from m_q = 20MeV to m_q = 5MeV quark masses, reaching the
epsilon-regime. We illustrate the strength of the method by calculating the low
energy constant F from the epsilon-regime pseudo-scalar correlator.Comment: 17 pages, 8 figure
Differential regulation of Ota and Otb, two primary glycine betaine transporters in the methanogenic archaeon Methanosarcina mazei go1
Methanogenic archaea accumulate glycine betaine in response to hypersalinity, but the regulation of proteins involved, their mechanism of activation and regulation of the corresponding genes are largely unknown. Methanosarcina mazei differs from most other methanoarchaea in having two gene clusters both encoding a potential glycine betaine transporter, Ota and Otb. Western blot as well as quantitative real-time PCR revealed that Otb is not regulated by osmolarity. On the other hand, cellular levels of Ota increased with increasing salt concentrations. A maximum was reached at 300-500 m M NaCl. Ota concentrations reached a maximum 4 h after an osmotic upshock. Hyperosmolarity also caused an increase in cellular Ota concentrations. In addition to osmolarity Ota expression was regulated by the growth phase. Expression of Ota as well as transport of betaine was downregulated in the presence of glycine betaine. Copyright (c) 2007 S. Karger AG, Basel
Detecting solar chameleons through radiation pressure
Light scalar fields can drive the accelerated expansion of the universe.
Hence, they are obvious dark energy candidates. To make such models compatible
with tests of General Relativity in the solar system and "fifth force" searches
on Earth, one needs to screen them. One possibility is the so-called
"chameleon" mechanism, which renders an effective mass depending on the local
matter density. If chameleon particles exist, they can be produced in the sun
and detected on Earth exploiting the equivalent of a radiation pressure. Since
their effective mass scales with the local matter density, chameleons can be
reflected by a dense medium if their effective mass becomes greater than their
total energy. Thus, under appropriate conditions, a flux of solar chameleons
may be sensed by detecting the total instantaneous momentum transferred to a
suitable opto-mechanical force/pressure sensor. We calculate the solar
chameleon spectrum and the reach in the chameleon parameter space of an
experiment using the preliminary results from a force/pressure sensor,
currently under development at INFN Trieste, to be mounted in the focal plane
of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that
such an experiment signifies a pioneering effort probing uncharted chameleon
parameter space.Comment: revised versio
KCNK5 is Functionally Down-Regulated Upon Long-Term Hypotonicity in Ehrlich Ascites Tumor Cells
Background/Aims: Regulatory volume decrease (RVD) in response to acute cell swelling is well described and KCNK5 (also known as TASK-2 or K2P5.1) has been shown to be the volume sensitive K+ channel in Ehrlich cells. Very little is, on the other hand, known about the effects of long-term hypotonicity on expression and function of KCNK5, thus we have investigated the effect of long-term hypotonicity (24h - 48h) on KCNK5 in Ehrlich cells on the mRNA, protein and physiological levels. Methods: Physiological effects of long-term hypotonicity were measured using patch-clamp and Coulter counter techniques. Expression patterns of KCNK5 on mRNA and protein levels were established using real-time qPCR and western blotting respectively. Results: The maximum swelling-activated current through KCNK5 was significantly decreased upon 48h of hypotonicity and likewise the RVD response was significantly impaired after both 24 and 48h of hypotonic stimulation. No significant differences in the KCNK5 mRNA expression patterns between control and stimulated cells were observed, but a significant decrease in the KCNK5 protein level 48h after stimulation was found. Conclusion: The data suggest that the strong physiological impairment of KCNK5 in Ehrlich cells after long-term hypotonic stimulation is predominantly due to down-regulation of the KCNK5 protein synthesis
Efficiency of a thermodynamic motor at maximum power
Several recent theories address the efficiency of a macroscopic thermodynamic
motor at maximum power and question the so-called "Curzon-Ahlborn (CA)
efficiency." Considering the entropy exchanges and productions in an n-sources
motor, we study the maximization of its power and show that the controversies
are partly due to some imprecision in the maximization variables. When power is
maximized with respect to the system temperatures, these temperatures are
proportional to the square root of the corresponding source temperatures, which
leads to the CA formula for a bi-thermal motor. On the other hand, when power
is maximized with respect to the transitions durations, the Carnot efficiency
of a bi-thermal motor admits the CA efficiency as a lower bound, which is
attained if the duration of the adiabatic transitions can be neglected.
Additionally, we compute the energetic efficiency, or "sustainable efficiency,"
which can be defined for n sources, and we show that it has no other universal
upper bound than 1, but that in certain situations, favorable for power
production, it does not exceed 1/2
- …