2,270 research outputs found

    Anti-phase Modulation of Electron- and Hole-like States in Vortex Core of Bi2Sr2CaCu2Ox Probed by Scanning Tunneling Spectroscopy

    Full text link
    In the vortex core of slightly overdoped Bi2Sr2CaCu2Ox, the electron-like and hole-like states have been found to exhibit spatial modulations in anti-phase with each other along the Cu-O bonding direction. Some kind of one-dimensionality has been observed in the vortex core, and it is more clearly seen in differential conductance maps at lower biases below +-9 mV

    Raman study of carrier-overdoping effects on the gap in high-Tc superconducting cuprates

    Full text link
    Raman scattering in the heavily overdoped (Y,Ca)Ba_2Cu_3O_{7-d} (T_c = 65 K) and Bi_2Sr_2CaCu_2O_{8+d} (T_c = 55 K) crystals has been investigated. For the both crystals, the electronic pair-breaking peaks in the A_{1g} and B_{1g} polarizations were largely shifted to the low energies close to a half of 2Delta_0, Delta_0 being the maximum gap. It strongly suggests s-wave mixing into the d-wave superconducting order parameter and the consequent manifestation of the Coulomb screening effect in the B_{1g}-channel. Gradual mixing of s-wave component with overdoping is not due to the change of crystal structure symmetry but a generic feature in all high-T_c superconducting cuprates.Comment: 5 pages, 4 figures, to be published in Phys. Rev. B, Rapid communicaito

    Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach

    Get PDF
    The synthesis of CdS and CdSe nanocrystallites using the thermolysis of several dithioor diselenocarbamato complexes of cadmium in trioctylphosphine oxide (TOPO) is reported. The nanodispersed materials obtained show quantum size effects in their optical spectra and exhibit near band-edge luminescence. The influence of experimental parameters on the properties of the nanocrystallites is discussed. HRTEM images of these materials show well-defined, crystalline nanosized particles. Standard size fractionation procedures can be performed in order to narrow the size dispersion of the samples. The TOPO-capped CdS and CdSe nanocrystallites and simple organic bridging ligands, such as 2,2¢-bipyrimidine, are used as the starting materials for the preparation of novel nanocomposites. The optical properties shown by these new nanocomposites are compared with those of the starting nanodispersed materials

    Gas chemical investigation of hafnium and zirconium complexes with hexafluoroacetylacetone using preseparated short-lived radioisotopes

    Get PDF
    Volatile metal complexes of the group 4 elements Zr and Hf with hexafluoroacetylacetonate (hfa) have been studied using short-lived radioisotopes of the metals. The new technique of physical preseparation has been employed where reaction products from heavy-ion induced fusion reactions are isolated in a physical recoil separator - the Berkeley Gas-filled Separator in our work - and made available for chemistry experiments. Formation and decomposition of M(hfa)4 (M=Zr, Hf) has been observed and the interaction strength with a fluorinated ethylene propylene (FEP) Teflon surface has been studied. From the results of isothermal chromatography experiments, an adsorption enthalpy of -ΔHa=(57±3)kJ/mol was deduced. In optimization experiments, the time for formation of the complex and its transport to a counting setup installed outside of the irradiation cave was minimized and values of roughly one minute have been reached. The half-life of 165Hf, for which conflicting values appear in the literature, was measured to be (73.9±0.8)s. Provided that samples suitable for α-spectroscopy can be prepared, the investigation of rutherfordium (Rf), the transactinide member of group 4, appears possible. In the future, based on the studies presented here, it appears possible to investigate short-lived single atoms produced with low rates ( e.g. , transactinide isotopes) in completely new chemical systems, e.g. , as metal complexes with organic ligands as used here or as organometallic compound

    The pseudogap: friend or foe of high Tc?

    Full text link
    Although nineteen years have passed since the discovery of high temperature superconductivity, there is still no consensus on its physical origin. This is in large part because of a lack of understanding of the state of matter out of which the superconductivity arises. In optimally and underdoped materials, this state exhibits a pseudogap at temperatures large compared to the superconducting transition temperature. Although discovered only three years after the pioneering work of Bednorz and Muller, the physical origin of this pseudogap behavior and whether it constitutes a distinct phase of matter is still shrouded in mystery. In the summer of 2004, a band of physicists gathered for five weeks at the Aspen Center for Physics to discuss the pseudogap. In this perspective, we would like to summarize some of the results presented there and discuss its importance in the context of strongly correlated electron systems.Comment: expanded version, 20 pages, 11 figures, to be published, Advances in Physic

    Quasiparticle structure in antiferromagnetism around the vortex and nuclear magnetic relaxation time

    Full text link
    On the basis of the Bogoliubov-de Gennes theory for the two-dimensional extended Hubbard model, the vortex structure in d-wave superconductors is investigated including the contribution of the induced incommensurate antiferromagnetism around the vortex core. As the on-site repulsive interaction UU increases, the spatial structure of charge and spin changes from the antiferromagnetic state with checkerboard modulation to that with the stripe modulation. By the effect of the induced antiferromagnetic moment, the zero-energy density of states is suppressed, and the vortex core radius increases. We also study the effect of the local density of states (LDOS) change on the site-dependent nuclear relaxation rate T1−1(r)T_1^{-1}({\bf r}). These results are compared with a variety of experiments performed on high TcT_c cuprates.Comment: 10pages, 8 figure

    Vortex structure in d-density wave scenario of pseudogap

    Full text link
    We investigate the vortex structure assuming the d-density wave scenario of the pseudogap. We discuss the profiles of the order parameters in the vicinity of the vortex, effective vortex charge and the local density of states. We find a pronounced modification of these quantities when compared to a purely superconducting case. Results have been obtained for a clean system as well as in the presence of a nonmagnetic impurity. We show that the competition between superconductivity and the density wave may explain some experimental data recently obtained for high-temperature superconductors. In particular, we show that the d-density wave scenario explains the asymmetry of the gap observed in the vicinity of the vortex core.Comment: 8 pages, 10 figure
    • …
    corecore