491 research outputs found
Automated Classification of Periodic Variable Stars detected by the Wide-field Infrared Survey Explorer
We describe a methodology to classify periodic variable stars identified
using photometric time-series measurements constructed from the Wide-field
Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases.
This will assist in the future construction of a WISE Variable Source Database
that assigns variables to specific science classes as constrained by the WISE
observing cadence with statistically meaningful classification probabilities.
We have analyzed the WISE light curves of 8273 variable stars identified in
previous optical variability surveys (MACHO, GCVS, and ASAS) and show that
Fourier decomposition techniques can be extended into the mid-IR to assist with
their classification. Combined with other periodic light-curve features, this
sample is then used to train a machine-learned classifier based on the random
forest (RF) method. Consistent with previous classification studies of variable
stars in general, the RF machine-learned classifier is superior to other
methods in terms of accuracy, robustness against outliers, and relative
immunity to features that carry little or redundant class information. For the
three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae
Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%,
and 84.5% respectively using cross-validation analyses, with 95% confidence
intervals of approximately +/-2%. These accuracies are achieved at purity (or
reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that
achieved in previous automated classification studies of periodic variable
stars.Comment: 48 pages, 17 figures, 1 table, accepted by A
Herschel Observations of Cataclysmic Variables
We have used the PACS instrument on the Herschel Space Observatory to observe eight cataclysmic variables at 70 and 160 μm. Of these eight objects, only AM Her was detected. We have combined the Herschel results with ground-based, Spitzer, and WISE observations to construct spectral energy distributions for all of the targets. For the two dwarf novae in the sample, SS Cyg and U Gem, we find that their infrared luminosities are completely dominated by their secondary stars. For the two highly magnetic "polars" in our survey, AM Her and EF Eri, we find that their mid-infrared excesses, previously attributed to circumbinary dust emission, can be fully explained by cyclotron emission. The WISE light curves for both sources show large, orbitally modulated variations that are identically phased to their near-IR light curves. We propose that significant emission from the lowest cyclotron harmonics (n ≤ 3) is present in EF Eri and AM Her. Previously, such emission would have been presumed to be optically thick, and not provide significant orbitally modulated flux. This suggests that the accretion onto polars is more complicated than assumed in the simple models developed for these two sources. We develop a model for the near-/mid-IR light curves for WZ Sge with an L2 donor star that shows that the ellipsoidal variations from its secondary star are detected. We conclude that none of the targets surveyed have dusty circumbinary disks
Spectropolarimetry of SN 2011dh in M51: geometric insights on a Type IIb supernova progenitor and explosion
We present seven epochs of spectropolarimetry of the Type IIb supernova (SN)
2011dh in M51, spanning 86 days of its evolution. The first epoch was obtained
9 days after the explosion, when the photosphere was still in the depleted
hydrogen layer of the stripped-envelope progenitor. Continuum polarization is
securely detected at the level of P~0.5% through day 14 and appears to diminish
by day 30, which is different from the prevailing trends suggested by studies
of other core-collapse SNe. Time-variable modulations in P and position angle
are detected across P-Cygni line features. H-alpha and HeI polarization peak
after 30 days and exhibit position angles roughly aligned with the earlier
continuum, while OI and CaII appear to be geometrically distinct. We discuss
several possibilities to explain the evolution of the continuum and line
polarization, including the potential effects of a tidally deformed progenitor
star, aspherical radioactive heating by fast-rising plumes of Ni-56 from the
core, oblique shock breakout, or scattering by circumstellar material. While
these possibilities are plausible and guided by theoretical expectations, they
are not unique solutions to the data. The construction of more detailed
hydrodynamic and radiative-transfer models that incorporate complex aspherical
geometries will be required to further elucidate the nature of the polarized
radiation from SN 2011dh and other Type IIb supernovae.Comment: Post-proof edit. Accepted to MNRAS 2015 Aug 1
Genetic diversity and demographic history of the leopard seal: A Southern Ocean top predator
Leopard seals (Hydrurga leptonyx) are top predators that can exert substantial top-down control of their Antarctic prey species. However, population trends and genetic diversity of leopard seals remain understudied, limiting our understanding of their ecological role. We investigated the genetic diversity, effective population size and demographic history of leopard seals to provide fundamental data that contextualizes their predatory influence on Antarctic ecosystems. Ninety leopard seals were sampled from the northern Antarctic Peninsula during the austral summers of 2008–2019 and a 405bp segment of the mitochondrial control region was sequenced for each individual. We uncovered moderate levels of nucleotide (π = 0.013) and haplotype (Hd = 0.96) diversity, and the effective population size was estimated at around 24,000 individuals (NE = 24,376; 95% CI: 16,876–33,126). Consistent with findings from other ice-breeding pinnipeds, Bayesian skyline analysis also revealed evidence for population expansion during the last glacial maximum, suggesting that historical population growth may have been boosted by an increase in the abundance of sea ice. Although leopard seals can be found in warmer, sub-Antarctic locations, the species’ core habitat is centered on the Antarctic, making it inherently vulnerable to the loss of sea ice habitat due to climate change. Therefore, detailed assessments of past and present leopard seal population trends are needed to inform policies for Antarctic ecosystems
Linguistics
Contains table of contents for Section 4, an introduction and abstracts for eleven doctoral dissertations
Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation
Two global glaciations occurred during the Neoproterozoic. Snowball Earth theory posits that these were terminated after millions of years of frigidity when initial warming from rising atmospheric CO2 concentrations was amplified by the reduction of ice cover and hence a reduction in planetary albedo. This scenario implies that most of the geological record of ice cover was deposited in a brief period of melt-back. However, deposits in low palaeo-latitudes show evidence of glacial–interglacial cycles. Here we analyse the sedimentology and oxygen and sulphur isotopic signatures of Marinoan Snowball glaciation deposits from Svalbard, in the Norwegian High Arctic. The deposits preserve a record of oscillations in glacier extent and hydrologic conditions under uniformly high atmospheric CO2 concentrations. We use simulations from a coupled three-dimensional ice sheet and atmospheric general circulation model to show that such oscillations can be explained by orbital forcing in the late stages of a Snowball glaciation. The simulations suggest that while atmospheric CO2 concentrations were rising, but not yet at the threshold required for complete melt-back, the ice sheets would have been sensitive to orbital forcing. We conclude that a similar dynamic can potentially explain the complex successions observed at other localities
The Dual-Axis Circumstellar Environment of the Type IIn Supernova 1997eg
We present multi-epoch spectral and spectropolarimetric observations of the
Type IIn supernova (SN) 1997eg that indicate the presence of a flattened
disk-like concentration of circumstellar material surrounding nonspherical
ejecta, with which the disk is misaligned. The polarization across the broad H
alpha, H beta, and He I 5876 lines of SN 1997eg forms closed loops when viewed
in the Stokes q-u plane. Such loops occur when the geometrical symmetry of one
or both of the Stokes parameters across spectral lines is broken, in this case
most likely by occultation of the ejecta by the equatorial circumstellar matter
concentration. The polarization of the narrow Balmer lines possesses an
intrinsic axis that differs by 12 degrees from that of the elongated ejecta and
probably indicates the orientation of the disk-like circumstellar material. The
existence of two different axes of symmetry in SN 1997eg suggests that neither
rotation of the progenitor nor the influence of a companion star can be the
sole mechanism creating a preferred axis within the supernova system. Our model
supports the emerging hypothesis that the progenitors of some Type IIn
supernovae are luminous blue variable stars, whose pre-supernova mass eruptions
form the circumstellar shells that physically characterize the SN IIn subclass.
These conclusions, which are independent of interstellar polarization effects,
would have been unobservable with only a single epoch of spectropolarimetry.Comment: 52 pages, 13 figures; accepted by ApJ. Several sections revised in
response to referee comments. High-resolution figures are available at
http://grammai.org/jhoffman/1997eg
Clinical impairment in premanifest and early Huntington's disease is associated with regionally specific atrophy.
TRACK-HD is a multicentre longitudinal observational study investigating the use of clinical assessments and 3-Tesla magnetic resonance imaging as potential biomarkers for future therapeutic trials in Huntington's disease (HD). The cross-sectional data from this large well-characterized dataset provide the opportunity to improve our knowledge of how the underlying neuropathology of HD may contribute to the clinical manifestations of the disease across the spectrum of premanifest (PreHD) and early HD. Two hundred and thirty nine gene-positive subjects (120 PreHD and 119 early HD) from the TRACK-HD study were included. Using voxel-based morphometry (VBM), grey and white matter volumes were correlated with performance in four domains: quantitative motor (tongue force, metronome tapping, and gait); oculomotor [anti-saccade error rate (ASE)]; cognition (negative emotion recognition, spot the change and the University of Pennsylvania smell identification test) and neuropsychiatric measures (apathy, affect and irritability). After adjusting for estimated disease severity, regionally specific associations between structural loss and task performance were found (familywise error corrected, P < 0.05); impairment in tongue force, metronome tapping and ASE were all associated with striatal loss. Additionally, tongue force deficits and ASE were associated with volume reduction in the occipital lobe. Impaired recognition of negative emotions was associated with volumetric reductions in the precuneus and cuneus. Our study reveals specific associations between atrophy and decline in a range of clinical modalities, demonstrating the utility of VBM correlation analysis for investigating these relationships in HD
SN 2014ab: An Aspherical Type IIn Supernova with Low Polarization
We present photometry, spectra, and spectropolarimetry of supernova (SN)
2014ab, obtained through days after peak brightness. SN 2014ab was a
luminous Type IIn SN ( mag) discovered after peak brightness near
the nucleus of its host galaxy, VV 306c. Prediscovery upper limits constrain
the time of explosion to within 200 days prior to discovery. While SN 2014ab
declined by mag over the course of our observations, the observed
spectrum remained remarkably unchanged. Spectra exhibit an asymmetric
emission-line profile with a consistently stronger blueshifted component,
suggesting the presence of dust or a lack of symmetry between the far side and
near side of the SN. The Pa emission line shows a profile very similar
to that of H, implying that this stronger blueshifted component is
caused either through obscuration by large dust grains, occultation by
optically thick material, or a lack of symmetry between the far side and near
side of the interaction region. Despite these asymmetric line profiles, our
spectropolarimetric data show that SN 2014ab has little detected polarization
after accounting for the interstellar polarization. This suggests that we are
seeing emission from a photosphere that has only small deviation from circular
symmetry face-on. We are likely seeing a SN IIn with nearly circular symmetry
in the plane normal to our line of sight, but with either large-grain dust or
significant asymmetry in the density of circumstellar material or SN ejecta
along our line of sight. We suggest that SN 2014ab and SN 2010jl (as well as
other SNe IIn) may be similar events viewed from different directions.Comment: 20 pages, 19 figure
- …