6,432 research outputs found

    Health risks of irrigation with untreated urban wastewater in the southern Punjab, Pakistan

    Get PDF
    Irrigation water / Water quality / Water reuse / Waste waters / Risks / Public health / Diseases / Farmers / Pakistan / Southern Punjab / Haroonabad

    Time-resolved FRET fluorescence spectroscopy of visible fluorescent protein pairs

    Get PDF
    Förster resonance energy transfer (FRET) is a powerful method for obtaining information about small-scale lengths between biomacromolecules. Visible fluorescent proteins (VFPs) are widely used as spectrally different FRET pairs, where one VFP acts as a donor and another VFP as an acceptor. The VFPs are usually fused to the proteins of interest, and this fusion product is genetically encoded in cells. FRET between VFPs can be determined by analysis of either the fluorescence decay properties of the donor molecule or the rise time of acceptor fluorescence. Time-resolved fluorescence spectroscopy is the technique of choice to perform these measurements. FRET can be measured not only in solution, but also in living cells by the technique of fluorescence lifetime imaging microscopy (FLIM), where fluorescence lifetimes are determined with the spatial resolution of an optical microscope. Here we focus attention on time-resolved fluorescence spectroscopy of purified, selected VFPs (both single VFPs and FRET pairs of VFPs) in cuvette-type experiments. For quantitative interpretation of FRET–FLIM experiments in cellular systems, details of the molecular fluorescence are needed that can be obtained from experiments with isolated VFPs. For analysis of the time-resolved fluorescence experiments of VFPs, we have utilised the maximum entropy method procedure to obtain a distribution of fluorescence lifetimes. Distributed lifetime patterns turn out to have diagnostic value, for instance, in observing populations of VFP pairs that are FRET-inactiv

    Investigation of Hamamatsu H8500 phototubes as single photon detectors

    Full text link
    We have investigated the response of a significant sample of Hamamatsu H8500 MultiAnode PhotoMultiplier Tubes (MAPMTs) as single photon detectors, in view of their use in a ring imaging Cherenkov counter for the CLAS12 spectrometer at the Thomas Jefferson National Accelerator Facility. For this, a laser working at 407.2nm wavelength was employed. The sample is divided equally into standard window type, with a spectral response in the visible light region, and UV-enhanced window type MAPMTs. The studies confirm the suitability of these MAPMTs for single photon detection in such a Cherenkov imaging application

    Structural Changes of Yellow Cameleon Domains Observed by Quantitative FRET Analysis and Polarized Fluorescence Correlation Spectroscopy

    Get PDF
    Förster resonance energy transfer (FRET) is a widely used method for monitoring interactions between or within biological macromolecules conjugated with suitable donor-acceptor pairs. Donor fluorescence lifetimes in absence and presence of acceptor molecules are often measured for the observation of FRET. However, these lifetimes may originate from interacting and noninteracting molecules, which hampers quantitative interpretation of FRET data. We describe a methodology for the detection of FRET that monitors the rise time of acceptor fluorescence on donor excitation thereby detecting only those molecules undergoing FRET. The large advantage of this method, as compared to donor fluorescence quenching method used more commonly, is that the transfer rate of FRET can be determined accurately even in cases where the FRET efficiencies approach 100% yielding highly quenched donor fluorescence. Subsequently, the relative orientation between donor and acceptor chromophores is obtained from time-dependent fluorescence anisotropy measurements carried out under identical conditions of donor excitation and acceptor detection. The FRET based calcium sensor Yellow Cameleon 3.60 (YC3.60) was used because it changes its conformation on calcium binding, thereby increasing the FRET efficiency. After mapping distances and orientation angles between the FRET moieties in YC3.60, cartoon models of this FRET sensor with and without calcium could be created. Independent support for these representations came from experiments where the hydrodynamic properties of YC3.60 under ensemble and single-molecule conditions on selective excitation of the acceptor were determined. From rotational diffusion times as found by fluorescence correlation spectroscopy and consistently by fluorescence anisotropy decay analysis it could be concluded that the open structure (without calcium) is flexible as opposed to the rather rigid closed conformation. The combination of two independent methods gives consistent results and presents a rapid and specific methodology to analyze structural and dynamical changes in a protein on ligand bindin

    Use of untreated wastewater in peri-urban agriculture in Pakistan: risks and opportunities

    Get PDF
    Water reuse / Waste waters / Water quality / Groundwater / Irrigation practices / Soil properties / Environmental effects / Conjunctive use / Pakistan / Haroonabad

    Expression of the Inhibitory CD200 Receptor Is Associated with Alternative Macrophage Activation

    Get PDF
    Classical macrophage activation is inhibited by the CD200 receptor (CD200R). Here, we show that CD200R expression was specifically induced on human in vitro polarized macrophages of the alternatively activated M2a subtype, generated by incubation with IL-4 or IL-13. In mice, peritoneal M2 macrophages, elicited during infection with the parasites Taenia crassiceps or Tryponosoma brucei brucei, expressed increased CD200R levels compared to those derived from uninfected mice. However, in vitro stimulation of mouse peritoneal macrophages and T crassiceps infection in IL-4-/- and IL-4R-/- mice showed that, in contrast to humans, induction of CD200R in mice was not IL-4 or IL-13 dependent. Our data identify CD200R as a suitable marker for alternatively activated macrophages in humans and corroborate observations of distinct species- and/or site-specific mechanisms regulating macrophage polarization in mouse and man. Copyright (C) 2009 S. Karger AG, Base

    Economic Benefits of Sustainable, Forage-Based Cattle Systems in Colombia and Nicaragua

    Get PDF
    Forage-based cattle systems play a key role in rural economies of developing countries in terms of food security and poverty alleviation, particularly in tropical Latin America. However, they are often related to being a major cause of negative environmental impacts by contributing to increased greenhouse gas emissions, land degradation, and the reduction of biodiversity. Significant resources have been allocated to research and development in forage material improvement, including selection and breeding. A broad range of improved materials were released by private and public sector actors showing superior characteristics in terms of productivity and environmental impacts compared to native or naturalized materials. Profitability is a fundamental attribute to incentivize or generate adoption of new systems by cattle producers, but this information is often not available to the livestock producer or the extension agents supporting decision-making processes. This research provides an overview on the economic viability of integrating different improved forage varieties in sustainably intensified cattle production systems in Colombia and Nicaragua. Our evaluations show that, despite higher establishment and management costs, integrating improved forage technologies (and management practices) in sustainably intensified cattle systems, either as monoculture, grass-legume associations, silvo-pastoral systems, or in combination with improved management strategies (e.g., intensive, or rotational grazing), not only make sense from the environmental and productive perspectives but also in terms of economic viability. In nearly all evaluated scenarios, the economic indicators improve by integrating improved forage technologies. Strong increases were observed for the following indicators: a) net income, b) unit profit margin, c) Net Present Value, d) Internal Rate of Return, and f) benefit-cost ratio. Strong decreases were observed for the following indicators: a) unit production cost, b) risk of obtaining economic loss, c) payback time, d) minimum area required for a profitable system, and e) sensitivity of the system to external shocks. This information will help cattle producers, extensionists and policymakers to make more holistic and informed land-use decisions that include productive, environmental, economic, and social benefits, and by this contributes to the broader adoption of more sustainable production systems
    • …
    corecore