383 research outputs found

    Low-Temperature Expansions and Correlation Functions of the Z_3-Chiral Potts Model

    Get PDF
    Using perturbative methods we derive new results for the spectrum and correlation functions of the general Z_3-chiral Potts quantum chain in the massive low-temperature phase. Explicit calculations of the ground state energy and the first excitations in the zero momentum sector give excellent approximations and confirm the general statement that the spectrum in the low-temperature phase of general Z_n-spin quantum chains is identical to one in the high-temperature phase where the role of charge and boundary conditions are interchanged. Using a perturbative expansion of the ground state for the Z_3 model we are able to gain some insight in correlation functions. We argue that they might be oscillating and give estimates for the oscillation length as well as the correlation length.Comment: 17 pages (Plain TeX), BONN-HE-93-1

    Temporal Aspects of Endogenous Pain Modulation During a Noxious Stimulus Prolonged for 1 Day

    Get PDF
    Background This study investigated (a) if a prolonged noxious stimulus (24‐hr topical capsaicin) in healthy adults would impair central pain inhibitory and facilitatory systems measured as a reduction in conditioned pain modulation (CPM) and enhancement of temporal summation of pain (TSP) and (b) if acute pain relief or exacerbation (cooling and heating the capsaicin patch) during the prolonged noxious stimulus would affect central pain modulation. Methods Twenty‐eight participants (26.2 ± 1.0 years; 12 women) wore a transdermal 8% capsaicin patch on the forearm for 24 hr. Data were collected at baseline (Day 0), 1 hr, 3 hr, Day 1 (post‐capsaicin application) and Day 3/4 (post‐capsaicin removal) that included capsaicin‐evoked pain intensity, heat pain thresholds (HPTs), TSP (10 painful cuff pressure stimuli on leg) and CPM (cuff pressure pain threshold on the leg prior vs. during painful cuff pressure conditioning on contralateral leg). After 3 hr, cold (12°C) and heat (42°C) stimuli were applied to the capsaicin patch to transiently increase and decrease pain intensity. Results Participants reported moderate pain scores at 1 hr (2.5 ± 2.0), 3 hr (3.7 ± 2.4), and Day 1 (2.4 ± 1.8). CPM decreased 3‐hr post‐capsaicin (p = .001) compared to Day 0 and remained diminished while the capsaicin pain score was reduced (0.4 ± 0.7, p \u3c .001) and increased (6.6 ± 2.2, p \u3c .001) by patch cooling and heating. No significant differences occurred for CPM during patch cooling or heating compared to initial 3HR; however, CPM during patch heating was reduced compared with patch cooling (p = .01). TSP and HPT did not change. Conclusions This prolonged experimental pain model is useful to provide insight into subacute pain conditions and may provide insight into the transition from acute to chronic pain. Significance During the early hours of a prolonged noxious stimulus in healthy adults, CPM efficacy was reduced and did not recover by temporarily removing the ongoing pain indicating a less dynamic neuroplastic process

    Comparative assessment of the sensitivity of fish early-life stage, daphnia and algae to the chronic ecotoxicity of xenobiotics - perspectives for alternatives to animal testing

    Get PDF
    No-observed-effect concentrations (NOECs) are used in environmental hazard classification and labeling of chemicals and their environmental risk assessment. They are typically obtained using standard tests such as the fish early-life stage (FELS) toxicity test, the chronic Daphnia reproduction test, and the algae growth inhibition test. Given the demand to replace and reduce animal tests, we explored the impact of the FELS toxicity test on the determination of effect concentrations by comparing the FELS toxicity test and the Daphnia and algae acute or chronic toxicity tests. Lowest-observed-effect concentrations (LOECs) were used instead of NOECs for better comparison with median lethal or effect concentration data. A database of FELS toxicity data for 223 compounds was established. Corresponding Daphnia and algae toxicity tests were identified using established databases (US Environmental Protection Agency ECOTOX, Organisation for Economic Co-operation and Development QSAR Toolbox, eChemPortal, EnviroTox, and OpenFoodTox). Approximately 9.5% of the investigated compounds showed a 10-fold higher sensitivity with the FELS toxicity test in comparison with the lowest effect concentrations obtained with any of the other tests. Some of these compounds have been known or considered as endocrine disrupting, or are other non-narcotic chemicals, indicating that the higher sensitivity in the FELS toxicity test is related to a specific mechanism of action. Targeting these mechanisms by alternative test systems or endpoints, using fish embryos for instance, may allow reduction or replacement of the FELS toxicity test or may allow us to prioritize compounds for conduction of the FELS toxicity test

    Effect of pre-treatment with catecholamines on cold preservation and ischemia/reperfusion-injury in rats

    Get PDF
    Treatment of organ donors with catecholamines reduces acute rejection episodes and improves long-term graft survival after renal transplantation. The aim of this study was to investigate the effect of catecholamine pre-treatment on ischemia/reperfusion (I/R)- and cold preservation injury in rat kidneys. I/R-injury was induced by clamping the left kidney vessels for 60 min along with a contralateral nephrectomy. Cold preservation injury was induced by storage of the kidneys for 24 h at +4°C in University of Wisconsin solution, followed by syngeneic transplantation. Rats were pre-treated with either dopamine (DA), dobutamine (DB), or norepinephrine (2, 5, and 10 μg/kg/min, each group) intravenously via an osmotic minipump for 24 h before I/R- and cold preservation injury. Pre-treatment with DA (2 or 5 μg/kg/min) and DB (5 μg/kg/min) improved recovery of renal function after I/R-injury and dose dependently reduced mononuclear and major histocompatibility complex class II-positive cells infiltrating the kidney after I/R-injury. One day after I/R-injury, upregulation of transforming growth factor (TGF)-β 1 and 2 and phosphorylation of p42/p44 mitogen-activated protein kinases was observed in kidneys of animals treated with DA or DB. DA (5 μg/kg/min) and DB (5 μg/kg/min) pre-treatment reduced endothelial cell damage after 24 h of cold preservation. Only DA pre-treatment improved renal function and reduced renal inflammation after 24 h of cold preservation and syngeneic transplantation. Our results demonstrate a protective effect of pre-treatment with catecholamines on renal inflammation and function after I/R- or cold preservation injury. This could help to explain the potent organoprotective effects of catecholamine pre-treatment observed in human kidney transplantation

    Lived Experiences of American Adults who Survive COVID-19: Implications for Physical Activity and Interpersonal Stress

    Get PDF
    Introduction: The cumulative number of COVID-19 cases has surpassed 579 million globally. Symptoms during and after COVID-19 infection vary from mild cold symptoms to severe multisystem illness. Given the wide range of symptom presentations and complications post COVID-19, the purpose of this study was to describe the lived experience of American adults surviving COVID-19. Method: This study employed an exploratory qualitative description design. Semi-structured interviews were conducted with a sample of 35 individuals, [white (94%), female (71%), mean age = 43.7 years], with proximity to a university in an urban Midwest American city. Interviews occurred between May and August 2021, three or more months after participants tested positive for COVID-19. Results: Forty percent of the 35 participants experienced prolonged COVID-19 symptoms impacting their lifestyle. Four themes characterized the impacts of the post COVID-19 condition on the lives of the participants within the context of a global pandemic: (a) disruptions in health & well-being, (b) persistent uncertainty, (c) disruptions in interpersonal relationships, (d) beneficent outcomes and adaptation. Discussion: This study of COVID-19 has identified important implications for physical activity and interpersonal stress. Prolonged COVID-19 symptoms led to disruptions in the health, well-being, and interpersonal relationships of participants. Healthcare professionals need to attend to symptoms post COVID-19, assess interpersonal functioning, and provide guidance on physical activity. Future studies are recommended to track consequences of COVID-19’s impact on long-term health and well-being

    Heart Rate Variability Is Reduced in COVID-19 Survivors and Associated with Physical Activity and Fatigue

    Get PDF
    Reduced heart rate variability (HRV) and fatigue are common after COVID-19 infection and both are potentially influenced by physical activity (PA). We compared resting HRV, PA from accelerometers and questionnaires, and self-reported fatigue in 41 COVID-19 survivors (~8 months postinfection, 38 ± 17 years) with 41 matched controls. Differences in HRV were observed on acceleration capacity (p = 0.041), deceleration capacity (p = 0.032), high-frequency peak frequency (p = 0.019), absolute low-frequency power (p = 0.042), relative very low-frequency power (p = 0.012), SD2 (from Poincare plot; p = 0.047), and DFA2 (slope of long-term detrended fluctuation analysis; p = 0.004). Fatigue was greater in COVID-19 survivors (p \u3c 0.001) with no differences in PA. Moderate-vigorous physical activity (MVPA) (Standardized Beta = −0.427, p = 0.003) and steps per day (Standardized Beta = −0.402, p = 0.007) were associated with DFA2 in COVID-19 survivors after controlling for age, sex, and body fat percentage. Fatigue was correlated to less MVPA (Spearman\u27s rho = 0.342, p = 0.031) and fewer steps per day (rho = 0.329, p = 0.038) in COVID-19 survivors, and was indirectly linked to HRV through these PA mediators (Estimate = −0.20; p = 0.040). We present a model showing the complex relations between HRV, PA, and fatigue that provides the foundation for strategies to improve outcomes and rehabilitation after COVID-19 infection

    From Understory to Canopy: In situ Behavior of Neotropical Forest Katydids in Response to Bat Echolocation Calls

    Get PDF
    Predator-prey interactions take place in complex environments, and research on the sensory ecology of predator-detection relies on understanding when, where, and how prey experience and respond to predator cues. Bats are significant nocturnal predators, and insects have evolved diverse strategies for avoiding predation by bats. While it is well-known that insects exhibit anti-bat strategies, from avoidance flight to reduced acoustic signaling, the specific conditions that elicit some of these behaviors are less well-known. To illuminate how insects respond to bats in nature, we studied how calling behavior changed when katydids experienced echolocation calls in a Neotropical forest. The diverse Neotropical bat community includes species that eavesdrop on prey sounds, such as the songs produced by male katydids. Previous research has shown that some katydid species respond to echolocation calls by reducing acoustic signaling. To capture the interactions of bats and katydids, we placed acoustic monitors at heights of 8, 16, and 24 meters above ground in 10 locations in the forest on Barro Colorado Island, Panama and recorded continuously for 24 h at each location. We randomly selected 250 recordings with echolocation calls and compared the acoustic spectrum of the forest before a bat arrived, when a bat was present, and after the bat was no longer detectable. We tested whether the response to bat calls changes with height, the family of bat producing the calls, the duration of the echolocation sequence, call amplitude, and call peak frequency. Bats appeared on ~50% of nighttime recordings, but echolocation calls that could have been produced by eavesdropping bats were rare (<4% of calls). Insect response to bats was nuanced and context-dependent. Despite the rarity of truly dangerous predator cues, echolocation decreased insect sound at several frequencies and heights. Insect response was not uniform, and in many cases echolocation calls had little effect on insect activity, perhaps reflecting the fact that echolocation calls were an inconsistent cue for the presence of eavesdropping bats. These nuanced responses raise interesting questions about predator detection in noise and provide valuable context for laboratory investigations on the sensory ecology of how individual prey species respond to predator cues

    Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis

    Get PDF
    Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials

    Applying and refining DNA analysis to determine the identity of plant material extracted from the digestive tracts of katydids

    Get PDF
    Background Feeding habits are central to animal ecology, but it is often difficult to characterize the diet of organisms that are arboreal, nocturnal, rare, or highly mobile. Genetic analysis of gut contents is a promising approach for expanding our understanding of animal feeding habits. Here, we adapt a laboratory protocol for extracting and sequencing plant material from gut contents and apply it to Neotropical forest katydids (Orthoptera: Tettigoniidae) on Barro Colorado Island (BCI) in Panama. Methods Our approach uses three chloroplast primer sets that were previously developed to identify vegetation on BCI. We describe the utility and success rate of each primer set. We then test whether there is a significant difference in the amplification and sequencing success of gut contents based on the size or sex of the katydid, the time of day that it was caught, and the color of the extracted gut contents. Results We find that there is a significant difference in sequencing success as a function of gut color. When extracts were yellow, green, or colorless the likelihood of successfully amplifying DNA ranged from ~30–60%. When gut extracts were red, orange, or brown, amplification success was exceptionally low (0–8%). Amplification success was also higher for smaller katydids and tended to be more successful in katydids that were captured earlier in the night. Strength of the amplified product was indicative of the likelihood of sequencing success, with strong bands having a high likelihood of success. By anticipating which samples are most likely to succeed, we provide information useful for estimating the number of katydids that need to be collected and minimizing the costs of purifying, amplifying, and sequencing samples that are unlikely to succeed. This approach makes it possible to understand the herbivory patterns of these trophically important katydids and can be applied more broadly to understand the diet of other tropical herbivores

    Photodynamic therapy for multi-resistant cutaneous Langerhans cell histiocytosis

    Get PDF
    Langerhans cell histiocytosis is a rare group of proliferative disorders. Beside cutaneous involvement, other internal organs can be affected. The treatment of cutaneous lesions is difficult and relies on topical corticosteroids, carmustine, nitrogen mustard, and photochemotherapy. Systemic steroids and vinblastine are used for recalcitrant skin lesions. However, some cases fail to respond. An 18-month old boy presented a CD1a+, S100a+ Langerhans cell histocytosis with cutaneous and severe scalp involvement. Topical corticosteroids and nitrogen mustard failed to improve the skin lesions. Systemic corticosteroids and vinblastine improved the truncal involvement but had no effect on the scalp lesions. Methylaminolevulinate (MAL) based photodynamic therapy (PDT) resulted in a significant regression of the scalp lesions. Control histology revealed an almost complete clearance of the tumor infiltrate. Clinical follow-up after six months showed no recurrence
    corecore