413 research outputs found
Dynamical Quasicondensation of Hard-Core Bosons at Finite Momenta
Long-range order in quantum many-body systems is usually associated with
equilibrium situations. Here, we experimentally investigate the
quasicondensation of strongly-interacting bosons at finite momenta in a
far-from-equilibrium case. We prepare an inhomogeneous initial state consisting
of one-dimensional Mott insulators in the center of otherwise empty
one-dimensional chains in an optical lattice with a lattice constant . After
suddenly quenching the trapping potential to zero, we observe the onset of
coherence in spontaneously forming quasicondensates in the lattice. Remarkably,
the emerging phase order differs from the ground-state order and is
characterized by peaks at finite momenta in the
momentum distribution function.Comment: See also Viewpoint: Emerging Quantum Order in an Expanding Gas,
Physics 8, 99 (2015
Approaching the adiabatic timescale with machine-learning
The control and manipulation of quantum systems without excitation is
challenging, due to the complexities in fully modeling such systems accurately
and the difficulties in controlling these inherently fragile systems
experimentally. For example, while protocols to decompress Bose-Einstein
condensates (BEC) faster than the adiabatic timescale (without excitation or
loss) have been well developed theoretically, experimental implementations of
these protocols have yet to reach speeds faster than the adiabatic timescale.
In this work, we experimentally demonstrate an alternative approach based on a
machine learning algorithm which makes progress towards this goal. The
algorithm is given control of the coupled decompression and transport of a
metastable helium condensate, with its performance determined after each
experimental iteration by measuring the excitations of the resultant BEC. After
each iteration the algorithm adjusts its internal model of the system to create
an improved control output for the next iteration. Given sufficient control
over the decompression, the algorithm converges to a novel solution that sets
the current speed record in relation to the adiabatic timescale, beating out
other experimental realizations based on theoretical approaches. This method
presents a feasible approach for implementing fast state preparations or
transformations in other quantum systems, without requiring a solution to a
theoretical model of the system. Implications for fundamental physics and
cooling are discussed.Comment: 7 pages main text, 2 pages supporting informatio
Observation of many-body localization of interacting fermions in a quasi-random optical lattice
We experimentally observe many-body localization of interacting fermions in a
one-dimensional quasi-random optical lattice. We identify the many-body
localization transition through the relaxation dynamics of an
initially-prepared charge density wave. For sufficiently weak disorder the time
evolution appears ergodic and thermalizing, erasing all remnants of the initial
order. In contrast, above a critical disorder strength a significant portion of
the initial ordering persists, thereby serving as an effective order parameter
for localization. The stationary density wave order and the critical disorder
value show a distinctive dependence on the interaction strength, in agreement
with numerical simulations. We connect this dependence to the ubiquitous
logarithmic growth of entanglement entropy characterizing the generic many-body
localized phase.Comment: 6 pages, 6 figures + supplementary informatio
- …