3,085 research outputs found

    The Use of Handheld X-Ray Fluorescence (XRF) Technology in Unraveling the Eruptive History of the San Francisco Volcanic Field, Arizona

    Get PDF
    While traditional geologic mapping includes the examination of structural relationships between rock units in the field, more advanced technology now enables us to simultaneously collect and combine analytical datasets with field observations. Information about tectonomagmatic processes can be gleaned from these combined data products. Historically, construction of multi-layered field maps that include sample data has been accomplished serially (first map and collect samples, analyze samples, combine data, and finally, readjust maps and conclusions about geologic history based on combined data sets). New instruments that can be used in the field, such as a handheld xray fluorescence (XRF) unit, are now available. Targeted use of such instruments enables geologists to collect preliminary geochemical data while in the field so that they can optimize scientific data return from each field traverse. Our study tests the application of this technology and projects the benefits gained by real-time geochemical data in the field. The integrated data set produces a richer geologic map and facilitates a stronger contextual picture for field geologists when collecting field observations and samples for future laboratory work. Real-time geochemical data on samples also provide valuable insight regarding sampling decisions by the field geologis

    Braneworld inflation from an effective field theory after WMAP three-year data

    Get PDF
    In light of the results from the WMAP three-year sky survey, we study an inflationary model based on a single-field polynomial potential, with up to quartic terms in the inflaton field. Our analysis is performed in the context of the Randall-Sundrum II braneworld theory, and we consider both the high-energy and low-energy (i.e. the standard cosmology case) limits of the theory. We examine the parameter space of the model, which leads to both large-field and small-field inflationary type solutions. We conclude that small field inflation, for a potential with a negative mass square term, is in general favored by current bounds on the tensor-to-scalar perturbation ratio rs.Comment: 11 pages, 5 figures; references updated and a few comments added; final version to appear in Phys. Rev.

    In-Situ XRF Measurements in Lunar Surface Exploration Using Apollo Samples as a Standard

    Get PDF
    Samples collected during the Apollo lunar surface missions were sampled and returned to Earth by astronauts with varying degrees of geological experience. The technology used in these EVAs, or extravehicular activities, included nothing more advanced than traditional terrestrial field instruments: rock hammer, scoop, claw tool, and sample bags. 40 years after Apollo, technology is being developed that will allow for a high-resolution geochemical map to be created in the field real-time. Handheld x-ray fluorescence (XRF) technology is one such technology. We use handheld XRF to enable a broad in-situ characterization of a geologic site of interest based on fairly rapid techniques that can be implemented by either an astronaut or a robotic explorer. The handheld XRF instrument we used for this study was the Innov-X Systems Delta XRF spectrometer

    Quasi-Particles in Two-Dimensional Hubbard Model: Splitting of Spectral Weight

    Full text link
    It is shown that the energy (ε)(\varepsilon) and momentum (k)(k) dependences of the electron self-energy function Σ(k,ε+i0)≡ΣR(k,ε) \Sigma (k, \varepsilon + i0) \equiv \Sigma^{R}(k, \varepsilon) are, ImΣR(k,ε)=−aε2∣ε−ξk∣−γ(k) {\rm Im} \Sigma^{R} (k, \varepsilon) = -a\varepsilon^{2}|\varepsilon - \xi_{k}|^{- \gamma (k)} where aa is some constant, ξk=ε(k)−μ,ε(k)\xi_{k} = \varepsilon(k)-\mu, \varepsilon(k) being the band energy, and the critical exponent γ(k) \gamma(k) , which depends on the curvature of the Fermi surface at k k , satisfies, 0≤γ(k)≤1 0 \leq \gamma(k) \leq 1 . This leads to a new type of electron liquid, which is the Fermi liquid in the limit of ε,ξk→0 \varepsilon, \xi_{k} \rightarrow 0 but for ξk≠0 \xi_{k} \neq 0 has a split one-particle spectra as in the Tomonaga-Luttinger liquid.Comment: 8 pages (LaTeX) 4 figures available upon request will be sent by air mail. KomabaCM-preprint-O

    Tomographic imaging and scanning thermal microscopy: thermal impedance tomography

    Get PDF
    The application of tomographic imaging techniques developed for medical applications to the data provided by the scanning thermal microscope will give access to true three-dimensional information on the thermal properties of materials on a mm length scale. In principle, the technique involves calculating and inverting a sensitivity matrix for a uniform isotropic material, collecting ordered data at several modulation frequencies, and multiplying the inverse of the matrix with the data vector. In practice, inversion of the matrix in impractical, and a novel iterative technique is used. Examples from both simulated and real data are given

    Radiation induced oscillations of the Hall resistivity in two-dimensional electron systems

    Full text link
    We consider the effect of microwave radiation on the Hall resistivity in two-dimension electron systems. It is shown that the photon-assisted impurity scattering of electrons can result in oscillatory dependences of both dissipative and Hall components of the conductivity and resistivity tensors on the ratio of radiation frequency to cyclotron frequency. The Hall resistivity can include a component induced by microwave radiation which is an even function of the magnetic field. The phase of the dissipative resistivity oscillations and the polarization dependence of their amplitude are compared with those of the Hall resistivity oscillations. The developed model can clarify the results of recent experimental observations of the radiation induced Hall effect.Comment: 4 pages, 1 figur

    Laser (U-Th)/He thermochronology of detrital zircons as a tool for studying surface processes in modern catchments

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 118 (2013): 1333–1341, doi:10.1002/jgrf.20091.Detrital mineral thermochronology of modern sediments is a valuable tool for interrogating landscape evolution. Detrital zircon (U-Th)/He thermochronology is of particular interest because zircons are durable and withstand transport in glacial and fluvial systems far better than, for example, apatite. However, because of the time-intensive nature of conventional zircon (U-Th)/He thermochronology, most previous studies of this kind have relied on data for a few tens of grains, even though conventional wisdom holds that a substantially larger number is necessary for a robust characterization of the population of cooling ages in a sample. Here, we introduce a microanalytical approach to detrital zircon (U-Th)/He thermochronology that addresses many factors that can complicate the interpretation of conventional zircon (U-Th)/He data, particularly with respect to alpha ejection and injection and U + Th zoning. In addition, this technique permits the effective dating of naturally abraded and broken grains, and, therefore, lessens the potential for sampling bias. We apply both conventional and laser microprobe techniques to a detrital sample from the Ladakh Range in the northwestern Indian Himalaya, showing that the two yield very similar principal modes of apparent ages. However, the laser microprobe data yield a broader spectrum of ages than that of the conventional data set, which we interpret to be caused by bias related to the selection requirements for zircons used for conventional dating. This method thus provides a time-efficient route to obtaining a higher-resolution distribution of dates from a single sample, which will, in turn, yield higher-fidelity constraints regarding catchment-wide erosion rates for surface process studies.Funding for this project was provided by NSF EAR-0642731, awarded to KVH and a Lewis and Clark Grant awarded to AT-L.2014-01-2

    Response to diagnosis of pre-diabetes in socioeconomically deprived areas : a qualitative study

    Get PDF
    Background: Diabetes prevention is a key priority for the NHS, with a particular focus on populations at highest risk. The NHS Diabetes Prevention Programme (NHS DPP) has been introduced, offering a course of dietary and lifestyle education to individuals with pre-diabetes. However, concerns about the NHS DPP include: (1) the possible unintended consequences of labelling more people with a ‘pre-condition’; (2) the possibility of worsening health inequalities as people in socioeconomically deprived areas tend to access behaviour-change programmes less readily; (3) the appropriateness of an intervention focused on individuals versus population-wide public health policy interventions. Aim: To explore the experience of diagnosis of pre-diabetes, and understand the barriers and facilitators to uptake of the NHS DPP for people living in socioeconomically deprived areas. Design & setting: A qualitative study was undertaken. Participants with pre-diabetes were recruited from practices serving socioeconomically deprived areas of Sheffield, UK. Method: Semi-structured interviews were conducted and continued until data saturation (23 participants). Thematic analysis of data was undertaken. Results: Both healthcare context and an individual’s personal and community context shaped response to diagnosis and likelihood of engaging with the NHS DPP. Patient activation was a useful concept in understanding response. Whether or not people participated in the NHS DPP, being diagnosed with pre-diabetes tended to provoke some degree of dietary change and did not cause significant anxiety for most. However, there were multiple barriers to engaging with the NHS DPP for this patient group. Conclusion: Diagnosing pre-diabetes can provoke an individual positive response, but the sociocultural environment often limits an individual’s ability to engage with the NHS DPP or make lifestyle change

    Response to diagnosis of pre-diabetes in socioeconomically deprived areas: a qualitative study

    Get PDF
    Background Diabetes prevention is a key priority for the NHS, with a particular focus on populations at highest risk. The NHS Diabetes Prevention Programme (NHS DPP) has been introduced, offering a course of dietary and lifestyle education to individuals with pre-diabetes. However, concerns about the NHS DPP include: (1) the possible unintended consequences of labelling more people with a ‘pre-condition’; (2) the possibility of worsening health inequalities as people in socioeconomically deprived areas tend to access behaviour-change programmes less readily; (3) the appropriateness of an intervention focused on individuals versus population-wide public health policy interventions. Aim To explore the experience of diagnosis of pre-diabetes, and understand the barriers and facilitators to uptake of the NHS DPP for people living in socioeconomically deprived areas. Design & setting A qualitative study was undertaken. Participants with pre-diabetes were recruited from practices serving socioeconomically deprived areas of Sheffield, UK. Method Semi-structured interviews were conducted and continued until data saturation (23 participants). Thematic analysis of data was undertaken. Results Both healthcare context and an individual’s personal and community context shaped response to diagnosis and likelihood of engaging with the NHS DPP. Patient activation was a useful concept in understanding response. Whether or not people participated in the NHS DPP, being diagnosed with pre-diabetes tended to provoke some degree of dietary change and did not cause significant anxiety for most. However, there were multiple barriers to engaging with the NHS DPP for this patient group. Conclusion Diagnosing pre-diabetes can provoke an individual positive response, but the sociocultural environment often limits an individual’s ability to engage with the NHS DPP or make lifestyle change

    Constraint-based, Single-point Approximate Kinetic Energy Functionals

    Full text link
    We present a substantial extension of our constraint-based approach for development of orbital-free (OF) kinetic-energy (KE) density functionals intended for the calculation of quantum-mechanical forces in multi-scale molecular dynamics simulations. Suitability for realistic system simulations requires that the OF-KE functional yield accurate forces on the nuclei yet be relatively simple. We therefore require that the functionals be based on DFT constraints, local, dependent upon a small number of parameters fitted to a training set of limited size, and applicable beyond the scope of the training set. Our previous "modified conjoint" generalized-gradient-type functionals were constrained to producing a positive-definite Pauli potential. Though distinctly better than several published GGA-type functionals in that they gave semi-quantitative agreement with Born-Oppenheimer forces from full Kohn-Sham results, those modified conjoint functionals suffer from unphysical singularities at the nuclei. Here we show how to remove such singularities by introducing higher-order density derivatives. We give a simple illustration of such a functional used for the dissociation energy as a function of bond length for selected molecules.Comment: 16 pages, 9 figures, 2 tables, submitted to Phys. Rev.
    • …
    corecore