67 research outputs found

    Can a wormhole supported by only small amounts of exotic matter really be traversable?

    Full text link
    Recent studies have shown that (a) quantum effects may be sufficient to support a wormhole throat and (b) the total amount of "exotic matter" can be made arbitrarily small. Unfortunately, using only small amounts of exotic matter may result in a wormhole that flares out too slowly to be traversable in a reasonable length of time. Combined with the Ford-Roman constraints, the wormhole may also come close to having an event horizon at the throat. This paper examines a model that overcomes these difficulties, while satisfying the usual traversability conditions. This model also confirms that the total amount of exotic matter can indeed be made arbitrarily small.Comment: 8 pages, AMSTe

    Dynamic wormholes, anti-trapped surfaces, and energy conditions

    Get PDF
    Adapting and extending a suggestion due to Page, we define a wormhole throat to be a marginally anti-trapped surface, that is, a closed two-dimensional spatial hypersurface such that one of the two future-directed null geodesic congruences orthogonal to it is just beginning to diverge. Typically a dynamic wormhole will possess two such throats, corresponding to the two orthogonal null geodesic congruences, and these two throats will not coincide, (though they do coalesce into a single throat in the static limit). The divergence property of the null geodesics at the marginally anti-trapped surface generalizes the ``flare-out'' condition for an arbitrary wormhole. We derive theorems regarding violations of the null energy condition (NEC) at and near these throats and find that, even for wormholes with arbitrary time-dependence, the violation of the NEC is a generic property of wormhole throats. We also discuss wormhole throats in the presence of fully antisymmetric torsion and find that the energy condition violations cannot be dumped into the torsion degrees of freedom. Finally by means of a concrete example we demonstrate that even temporary suspension of energy-condition violations is incompatible with the flare-out property of dynamic throats.Comment: 32 pages in plain LaTex, no figures. Additional text and references adde

    Vacuum polarization of a scalar field in wormhole spacetimes

    Get PDF
    An analitical approximation of for a scalar field in a static spherically symmetric wormhole spacetime is obtained. The scalar field is assumed to be both massive and massless, with an arbitrary coupling Îľ\xi to the scalar curvature, and in a zero temperature vacuum state.Comment: 10 pages, RevTeX, two eps figure

    Static and dynamic traversable wormhole geometries satisfying the Ford-Roman constraints

    Full text link
    It was shown by Ford and Roman in 1996 that quantum field theory severely constrains wormhole geometries on a macroscopic scale. The first part of this paper discusses a wide class of wormhole solutions that meet these constraints. The type of shape function used is essentially generic. The constraints are then discussed in conjunction with various redshift functions. Violations of the weak energy condition and traversability criteria are also considered. The second part of the paper analyzes analogous time-dependent (dynamic) wormholes with the aid of differential forms. It is shown that a violation of the weak energy condition is not likely to be avoidable even temporarily.Comment: 16 pages AMSTe

    On Traversable Lorentzian Wormholes in the Vacuum Low Energy Effective String Theory in Einstein and Jordan Frames

    Full text link
    Three new classes (II-IV) of solutions of the vacuum low energy effective string theory in four dimensions are derived. Wormhole solutions are investigated in those solutions including the class I case both in the Einstein and in the Jordan (string) frame. It turns out that, of the eight classes of solutions investigated (four in the Einstein frame and four in the corresponding string frame), massive Lorentzian traversable wormholes exist in five classes. Nontrivial massless limit exists only in class I Einstein frame solution while none at all exists in the string frame. An investigation of test scalar charge motion in the class I solution in the two frames is carried out by using the Plebanski-Sawicki theorem. A curious consequence is that the motion around the extremal zero (Keplerian) mass configuration leads, as a result of scalar-scalar interaction, to a new hypothetical "mass" that confines test scalar charges in bound orbits, but does not interact with neutral test particles.Comment: 18 page

    Electromagnetic waves in a wormhole geometry

    Get PDF
    We investigate the propagation of electromagnetic waves through a static wormhole. It is shown that the problem can be reduced to a one-dimensional Schr\"odinger-like equation with a barrier-type potential. Using numerical methods, we calculate the transmission coefficient as a function of the energy. We also discuss the polarization of the outgoing radiation due to this gravitational scattering.Comment: LaTex file, 5 pages, 2 figures, one reference added, accepted for publication in PR

    Cylindrical thin-shell wormholes

    Full text link
    A general formalism for the dynamics of non rotating cylindrical thin-shell wormholes is developed. The time evolution of the throat is explicitly obtained for thin-shell wormholes whose metric has the form associated to local cosmic strings. It is found that the throat collapses to zero radius, remains static or expands forever, depending only on the sign of its initial velocity.Comment: 10 page

    Microlensing by natural wormholes: theory and simulations

    Get PDF
    We provide an in depth study of the theoretical peculiarities that arise in effective negative mass lensing, both for the case of a point mass lens and source, and for extended source situations. We describe novel observational signatures arising in the case of a source lensed by a negative mass. We show that a negative mass lens produces total or partial eclipse of the source in the umbra region and also show that the usual Shapiro time delay is replaced with an equivalent time gain. We describe these features both theoretically, as well as through numerical simulations. We provide negative mass microlensing simulations for various intensity profiles and discuss the differences between them. The light curves for microlensing events are presented and contrasted with those due to lensing produced by normal matter. Presence or absence of these features in the observed microlensing events can shed light on the existence of natural wormholes in the Universe.Comment: 16 pages, 24 postscript figures (3 coloured), revtex style, submitted to Phys. Rev.

    Thin-shell wormholes in Einstein-Maxwell theory with a Gauss-Bonnet term

    Get PDF
    We study five dimensional thin-shell wormholes in Einstein-Maxwell theory with a Gauss-Bonnet term. The linearized stability under radial perturbations and the amount of exotic matter are analyzed as a function of the parameters of the model. We find that the inclusion of the quadratic correction substantially widens the range of possible stable configurations, and besides it allows for a reduction of the exotic matter required to construct the wormholes.Comment: 13 pages, 6 figures; v2: minor changes and new references added. Accepted for publication in General Relativity and Gravitatio

    Possible wormholes in a brane world

    Get PDF
    The condition R=0, where R is the four-dimensional scalar curvature, is used for obtaining a large class (with an arbitrary function of r) of static, spherically symmetric Lorentzian wormhole metrics. The wormholes are globally regular and traversable, can have throats of arbitrary size and can be both symmetric and asymmetric. These metrics may be treated as possible wormhole solutions in a brane world since they satisfy the vacuum Einstein equations on the brane where effective stress-energy is induced by interaction with the bulk gravitational field. Some particular examples are discussed.Comment: 7 pages, revtex4. Submitted to Phys. Rev.
    • …
    corecore