410 research outputs found

    Extensional rupture of model non-Newtonian fluid filaments

    Full text link
    We present molecular dynamics computer simulations of filaments of model non-Newtonian liquid stretched in a uniaxial deformation to the point of breaking. The liquid consists of Lennard-Jones monomers bound into chains of 100 monomers by nonlinear springs, and several different constant velocity and constant strain rate deformations are considered. Generally we observe nonuniform extensions originating in an interplay between the stretching forces and elastic and capillary restoring mechanisms, leading to highly uneven shapes and alternating stretched and unstretched regions of liquid. Except at the fastest pulling speeds, the filaments continue to thin indefinitely and break only when depleted of molecules, rather than common viscoelastic rupture mechanisms.Comment: 7 pages text, 14 pages (eps) figure

    No Association Between Screening for Hepatocellular Carcinoma and Reduced Cancer-Related Mortality in Patients With Cirrhosis

    Get PDF
    Background & Aims: Screening patients with cirrhosis for hepatocellular carcinoma (HCC) has been recommended. We conducted a matched case–control study within the US Veterans Affairs (VA) health care system to determine whether screening by abdominal ultrasonography (USS) and/or by measuring serum level of α-fetoprotein (AFP) was associated with decreased cancer-related mortality in patients with cirrhosis. Methods: We defined cases (n = 238) as patients with cirrhosis who died of HCC from January 1, 2013 through August 31, 2015 and had been in VA care with a diagnosis of cirrhosis for at least 4 years before the diagnosis of HCC. We matched each case to 1 control (n = 238), defined as a patient with cirrhosis who did not die of HCC and had been in VA care for at least 4 years before the date of the matched case's HCC diagnosis. Controls were matched to cases by year of cirrhosis diagnosis, race and ethnicity, age, sex, etiology of cirrhosis, Model for End-Stage Liver Disease score, and VA medical center. We identified all USS and serum AFP tests performed within 4 years before the date of HCC diagnosis in cases or the equivalent index date in controls and determined by chart extraction (blinded to case or control status) whether these tests were performed for screening. Results: There were no significant differences between cases and controls in the proportions of patients who underwent screening USS (52.9% vs 54.2%), screening measurement of serum AFP (74.8% vs 73.5%), screening USS or measurement of serum AFP (81.1% vs 79.4%), or screening USS and measurement of serum AFP (46.6% vs 48.3%) within 4 years before the index date, with or without adjusting for potential confounders. There also was no difference in receipt of these screening tests within 1, 2, or 3 years before the index date. Conclusions: In a matched case–control study of the VA health care system, we found that screening patients with cirrhosis for HCC by USS, measurement of serum AFP, either test, or both tests was not associated with decreased HCC-related mortality. We encourage additional case–control studies to evaluate the efficacy of screening for HCC in other health care systems, in which available records are sufficiently detailed to enable identification of the indication for USS and AFP tests

    Reply

    Get PDF
    Reply. We are grateful for the interest others have shown in our paper, which allowed us to clarify critical aspects of the case-control study design and the nature of our study population

    Issues and Challenges in Orbital-free Density Functional Calculations

    Full text link
    Solving the Euler equation which corresponds to the energy minimum of a density functional expressed in orbital-free form involves related but distinct computational challenges. One is the choice between all-electron and pseudo-potential calculations and, if the latter, construction of the pseudo-potential. Another is the stability, speed, and accuracy of solution algorithms. Underlying both is the fundamental issue of satisfactory quality of the approximate functionals (kinetic energy and exchange-correlation). We address both computational issues and illustrate them by some comparative performance testing of our recently developed modified-conjoint generalized gradient approximation kinetic energy functionals. Comparisons are given for atoms, diatomic molecules, and some simple solids.Comment: submitted to Computer Physics Communication

    PGE2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function.

    Get PDF
    Expansion of antigen-experienced CD8+ T cells is critical for the success of tumour-infiltrating lymphocyte (TIL)-adoptive cell therapy (ACT) in patients with cancer1. Interleukin-2 (IL-2) acts as a key regulator of CD8+ cytotoxic T lymphocyte functions by promoting expansion and cytotoxic capability2,3. Therefore, it is essential to comprehend mechanistic barriers to IL-2 sensing in the tumour microenvironment to implement strategies to reinvigorate IL-2 responsiveness and T cell antitumour responses. Here we report that prostaglandin E2 (PGE2), a known negative regulator of immune response in the tumour microenvironment4,5, is present at high concentrations in tumour tissue from patients and leads to impaired IL-2 sensing in human CD8+ TILs via the PGE2 receptors EP2 and EP4. Mechanistically, PGE2 inhibits IL-2 sensing in TILs by downregulating the IL-2Rγc chain, resulting in defective assembly of IL-2Rβ-IL2Rγc membrane dimers. This results in impaired IL-2-mTOR adaptation and PGC1α transcriptional repression, causing oxidative stress and ferroptotic cell death in tumour-reactive TILs. Inhibition of PGE2 signalling to EP2 and EP4 during TIL expansion for ACT resulted in increased IL-2 sensing, leading to enhanced proliferation of tumour-reactive TILs and enhanced tumour control once the cells were transferred in vivo. Our study reveals fundamental features that underlie impairment of human TILs mediated by PGE2 in the tumour microenvironment. These findings have therapeutic implications for cancer immunotherapy and cell therapy, and enable the development of targeted strategies to enhance IL-2 sensing and amplify the IL-2 response in TILs, thereby promoting the expansion of effector T cells with enhanced therapeutic potential

    Manufacturing flow line systems: a review of models and analytical results

    Get PDF
    The most important models and results of the manufacturing flow line literature are described. These include the major classes of models (asynchronous, synchronous, and continuous); the major features (blocking, processing times, failures and repairs); the major properties (conservation of flow, flow rate-idle time, reversibility, and others); and the relationships among different models. Exact and approximate methods for obtaining quantitative measures of performance are also reviewed. The exact methods are appropriate for small systems. The approximate methods, which are the only means available for large systems, are generally based on decomposition, and make use of the exact methods for small systems. Extensions are briefly discussed. Directions for future research are suggested.National Science Foundation (U.S.) (Grant DDM-8914277

    Very Singular Diffusion Equations-Second and Fourth Order Problems

    Get PDF
    This paper studies singular diffusion equations whose diffusion effect is so strong that the speed of evolution becomes a nonlocal quantity. Typical examples include the total variation flow as well as crystalline flow which are formally of second order. This paper includes fourth order models which are less studied compared with second order models. A typical example of this model is an H−1 gradient flow of total variation. It turns out that such a flow is quite different from the second order total variation flow. For example, we prove that the solution may instantaneously develop jump discontinuity for the fourth order total variation flow by giving an explicit example

    Ablation of lysophosphatidic acid receptor 1 attenuates hypertrophic cardiomyopathy in a mouse model.

    Get PDF
    Myocardial fibrosis is a key pathologic feature of hypertrophic cardiomyopathy (HCM). However, the fibrotic pathways activated by HCM-causing sarcomere protein gene mutations are poorly defined. Because lysophosphatidic acid is a mediator of fibrosis in multiple organs and diseases, we tested the role of the lysophosphatidic acid pathway in HCM. Lysphosphatidic acid receptor 1 (LPAR1), a cell surface receptor, is required for lysophosphatidic acid mediation of fibrosis. We bred HCM mice carrying a pathogenic myosin heavy-chain variant (403(+/-)) with Lpar1-ablated mice to create mice carrying both genetic changes (403(+/-) LPAR1(-/-)) and assessed development of cardiac hypertrophy and fibrosis. Compared with 403(+/-) LPAR1(WT), 403(+/-) LPAR1(-/-) mice developed significantly less hypertrophy and fibrosis. Single-nucleus RNA sequencing of left ventricular tissue demonstrated that Lpar1 was predominantly expressed by lymphatic endothelial cells (LECs) and cardiac fibroblasts. Lpar1 ablation reduced the population of LECs, confirmed by immunofluorescence staining of the LEC markers Lyve1 and Ccl21a and, by in situ hybridization, for Reln and Ccl21a. Lpar1 ablation also altered the distribution of fibroblast cell states. FB1 and FB2 fibroblasts decreased while FB0 and FB3 fibroblasts increased. Our findings indicate that Lpar1 is expressed predominantly by LECs and fibroblasts in the heart and is required for development of hypertrophy and fibrosis in an HCM mouse model. LPAR1 antagonism, including agents in clinical trials for other fibrotic diseases, may be beneficial for HCM
    corecore