21,634 research outputs found

    Micromachined membrane particle filters

    Get PDF
    We report here several particle membrane filters (8 x 8 mm^2) with circular, hexagonal and rectangular through holes. By varying hole dimensions from 6 to 12 pm, opening factors from 4 to 45 % are achieved. In order to improve the filter robustness, a composite silicon nitride/Parylene membrane technology is developed. More importantly, fluid dynamic performance of the filters is also studied by both experiments and numerical simulations. It is found that the gaseous flow through the filters depends strongly on opening factors, and the measured pressure drops are much lower than that from numerical simulation using the Navier-Stokes equation. Interestingly, surface velocity slip can only account for a minor part of the discrepancy. This suggests that a very interesting topic for micro fluid mechanics research is identified

    Two--Electron Atoms in Short Intense Laser Pulses

    Full text link
    We discuss a method of solving the time dependent Schrodinger equation for atoms with two active electrons in a strong laser field, which we used in a previous paper [A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997)] to calculate ionization, double excitation and harmonic generation in Helium by short laser pulses. The method employs complex scaling and an expansion in an explicitly correlated basis. Convergence of the calculations is documented and error estimates are provided. The results for Helium at peak intensities up to 10^15 W/cm^2 and wave length 248 nm are accurate to at least 10 %. Similarly accurate calculations are presented for electron detachment and double excitation of the negative hydrogen ion.Comment: 14 pages, including figure

    Analog Computer Research

    Get PDF
    Contains reports on three research projects

    "Low-state" Black Hole Accretion in Nearby Galaxies

    Full text link
    I summarize the main observational properties of low-luminosity AGNs in nearby galaxies to argue that they are the high-mass analogs of black hole X-ray binaries in the "low/hard" state. The principal characteristics of low-state AGNs can be accommodated with a scenario in which the central engine is comprised of three components: an optically thick, geometrically accretion disk with a truncated inner radius, a radiatively inefficient flow, and a compact jet.Comment: 8 pages. To appear in From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales, ed. T. J. Maccarone, R. P. Fender, and L. C. Ho (Dordrecht: Kluwer

    Analog Computer Research

    Get PDF
    Contains research objectives and reports on three research projects

    Dp-branes, NS5-branes and U-duality from nonabelian (2,0) theory with Lie 3-algebra

    Full text link
    We derive the super Yang-Mills action of Dp-branes on a torus T^{p-4} from the nonabelian (2,0) theory with Lie 3-algebra. Our realization is based on Lie 3-algebra with pairs of Lorentzian metric generators. The resultant theory then has negative norm modes, but it results in a unitary theory by setting VEV's of these modes. This procedure corresponds to the torus compactification, therefore by taking a transformation which is equivalent to T-duality, the Dp-brane action is obtained. We also study type IIA/IIB NS5-brane and Kaluza-Klein monopole systems by taking other VEV assignments. Such various compactifications can be realized in the nonabelian (2,0) theory, since both longitudinal and transverse directions can be compactified, which is different from the BLG theory. We finally discuss U-duality among these branes, and show that most of the moduli parameters in U-duality group are recovered. Especially in D5-brane case, the whole U-duality relation is properly reproduced.Comment: 1+26 page

    Lowest Open Channels, Bound States, and Narrow Resonances of Dipositronium

    Full text link
    The constraints imposed by symmetry on the open channels of dipositronium has been studied, and the symmetry-adapted lowest open channel of each quantum state has been identified. Based on this study, the existence of two more 0^+ bound states has been theoretically confirmed, and a 0^+ narrow resonance has been predicted. A variational calculation has been performed to evaluate the critical strength of the repulsive interaction . Two 0^- states are found to have their critical strengths very close to 1, they are considered as candidates of new narrow resonances or loosely bound states .Comment: 10 pages, 0 figure

    Effect of short range order on electronic and magnetic properties of disordered Co based alloys

    Full text link
    We here study electronic structure and magnetic properties of disordered CoPd and CoPt alloys using Augmented Space Recursion technique coupled with the tight-binding linearized muffin tin orbital (TB-LMTO) method. Effect of short range ordering present in disordered phase of alloys on electronic and magnetic properties has been discussed. We present results for magnetic moments, Curie temperatures and electronic band energies with varying degrees of short range order for different concentrations of Co and try to understand and compare the magnetic properties and ordering phenomena in these systems.Comment: 15 pages,17 postscript figures,uses own style file

    Robust Online Monitoring of Signal Temporal Logic

    Full text link
    Signal Temporal Logic (STL) is a formalism used to rigorously specify requirements of cyberphysical systems (CPS), i.e., systems mixing digital or discrete components in interaction with a continuous environment or analog com- ponents. STL is naturally equipped with a quantitative semantics which can be used for various purposes: from assessing the robustness of a specification to guiding searches over the input and parameter space with the goal of falsifying the given property over system behaviors. Algorithms have been proposed and implemented for offline computation of such quantitative semantics, but only few methods exist for an online setting, where one would want to monitor the satisfaction of a formula during simulation. In this paper, we formalize a semantics for robust online monitoring of partial traces, i.e., traces for which there might not be enough data to decide the Boolean satisfaction (and to compute its quantitative counterpart). We propose an efficient algorithm to compute it and demonstrate its usage on two large scale real-world case studies coming from the automotive domain and from CPS education in a Massively Open Online Course (MOOC) setting. We show that savings in computationally expensive simulations far outweigh any overheads incurred by an online approach
    • …
    corecore