296 research outputs found

    An Endoribonuclease Functionally Linked to Perinuclear mRNP Quality Control Associates with the Nuclear Pore Complexes

    Get PDF
    Nuclear mRNA export is a crucial step in eukaryotic gene expression, which is in yeast coupled to cotranscriptional messenger ribonucleoprotein particle (mRNP) assembly and surveillance. Several surveillance systems that monitor nuclear mRNP biogenesis and export have been described, but the mechanism by which the improper mRNPs are recognized and eliminated remains poorly understood. Here we report that the conserved PIN domain protein Swt1 is an RNA endonuclease that participates in quality control of nuclear mRNPs and can associate with the nuclear pore complex (NPC). Swt1 showed endoribonuclease activity in vitro that was inhibited by a point mutation in the predicted catalytic site. Swt1 lacked clear sequence specificity but showed a strong preference for single-stranded regions. Genetic interactions were found between Swt1 and the THO/TREX and TREX-2 complexes, and with components of the perinuclear mRNP surveillance system, Mlp1, Nup60, and Esc1. Inhibition of the nuclease activity of Swt1 increased the levels and cytoplasmic leakage of unspliced aberrant pre-mRNA, and induced robust nuclear poly(A)+ RNA accumulation in mlp1Δ and esc1Δ strains. Overexpression of Swt1 also caused strong nuclear poly(A)+ RNA accumulation. Swt1 is normally distributed throughout the nucleus and cytoplasm but becomes concentrated at nuclear pore complexes (NPCs) in the nup133Δ mutant, which causes NPC clustering and defects in mRNP export. The data suggest that Swt1 endoribonuclease might be transiently recruited to NPCs to initiate the degradation of defective pre-mRNPs or mRNPs trapped at nuclear periphery in order to avoid their cytoplasmic export and translation

    Increasing Use of Allogeneic Hematopoietic Cell Transplantation in Patients Aged 70 Years and Older in the United States

    Get PDF
    In this study, we evaluated trends and outcomes of allogeneic hematopoietic cell transplantation (HCT) in adults ≄ 70 years with hematologic malignancies across the United States. Adults ≄ 70 years with a hematologic malignancy undergoing first allogeneic HCT in the United States between 2000 and 2013 and reported to the Center for International Blood and Marrow Transplant Research were eligible. Transplant utilization and transplant outcomes, including overall survival (OS), progression-free survival (PFS), and transplant-related mortality (TRM) were studied. One thousand one hundred and six patients ≄ 70 years underwent HCT across 103 transplant centers. The number and proportion of allografts performed in this population rose markedly over the past decade, accounting for 0.1% of transplants in 2000 to 3.85% (N = 298) in 2013. Acute myeloid leukemia and myelodysplastic syndromes represented the most common disease indications. Two-year OS and PFS significantly improved over time (OS: 26% [95% confidence interval (CI), 21% to 33%] in 2000-2007 to 39% [95% CI, 35% to 42%] in 2008-2013, P \u3c .001; PFS: 22% [16% to 28%] in 2000-2007 to 32% [95% CI, 29% to 36%] in 2008-2013, P = .003). Two-year TRM ranged from 33% to 35% and was unchanged over time (P = .54). Multivariable analysis of OS in the modern era of 2008-2013 revealed higher comorbidity by HCT comorbidity index ≄ 3 (hazard ratio [HR], 1.27; P = .006), umbilical cord blood graft (HR, 1.97; P = .0002), and myeloablative conditioning (HR, 1.61; P = .0002) as adverse factors. Over the past decade, utilization and survival after allogeneic transplant have increased in patients ≄ 70 years. Select adults ≄70 years with hematologic malignancies should be considered for transplant

    GH safety workshop position paper: A critical appraisal of recombinant human GH therapy in children and adults

    Get PDF
    Recombinant human GH (rhGH) has been in use for 30 years, and over that time its safety and efficacy in children and adults has been subject to considerable scrutiny. In 2001, a statement from the GH Research Society (GRS) concluded that 'for approved indications, GH is safe'; however, the statement highlighted a number of areas for on-going surveillance of long-Term safety, including cancer risk, impact on glucose homeostasis, and use of high dose pharmacological rhGH treatment. Over the intervening years, there have been a number of publications addressing the safety of rhGH with regard to mortality, cancer and cardiovascular risk, and the need for long-Term surveillance of the increasing number of adults who were treated with rhGH in childhood. Against this backdrop of interest in safety, the European Society of Paediatric Endocrinology (ESPE), the GRS, and the Pediatric Endocrine Society (PES) convened a meeting to reappraise the safety of rhGH. The ouput of the meeting is a concise position statement

    Inhibition of Protein Aggregation: Supramolecular Assemblies of Arginine Hold the Key

    Get PDF
    BACKGROUND: Aggregation of unfolded proteins occurs mainly through the exposed hydrophobic surfaces. Any mechanism of inhibition of this aggregation should explain the prevention of these hydrophobic interactions. Though arginine is prevalently used as an aggregation suppressor, its mechanism of action is not clearly understood. We propose a mechanism based on the hydrophobic interactions of arginine. METHODOLOGY: We have analyzed arginine solution for its hydrotropic effect by pyrene solubility and the presence of hydrophobic environment by 1-anilino-8-naphthalene sulfonic acid fluorescence. Mass spectroscopic analyses show that arginine forms molecular clusters in the gas phase and the cluster composition is dependent on the solution conditions. Light scattering studies indicate that arginine exists as clusters in solution. In the presence of arginine, the reverse phase chromatographic elution profile of Alzheimer's amyloid beta 1-42 (Abeta(1-42)) peptide is modified. Changes in the hydrodynamic volume of Abeta(1-42) in the presence of arginine measured by size exclusion chromatography show that arginine binds to Abeta(1-42). Arginine increases the solubility of Abeta(1-42) peptide in aqueous medium. It decreases the aggregation of Abeta(1-42) as observed by atomic force microscopy. CONCLUSIONS: Based on our experimental results we propose that molecular clusters of arginine in aqueous solutions display a hydrophobic surface by the alignment of its three methylene groups. The hydrophobic surfaces present on the proteins interact with the hydrophobic surface presented by the arginine clusters. The masking of hydrophobic surface inhibits protein-protein aggregation. This mechanism is also responsible for the hydrotropic effect of arginine on various compounds. It is also explained why other amino acids fail to inhibit the protein aggregation

    Device Performance of Emerging Photovoltaic Materials (Version 3)

    Get PDF
    Following the 2nd release of the “Emerging PV reports,” the best achievements in the performance of emerging photovoltaic devices in diverse emerging photovoltaic research subjects are summarized, as reported in peer-reviewed articles in academic journals since August 2021. Updated graphs, tables, and analyses are provided with several performance parameters, e.g., power conversion efficiency, open-circuit voltage, short-circuit current density, fill factor, light utilization efficiency, and stability test energy yield. These parameters are presented as a function of the photovoltaic bandgap energy and the average visible transmittance for each technology and application, and are put into perspective using, e.g., the detailed balance efficiency limit. The 3rd installment of the “Emerging PV reports” extends the scope toward triple junction solar cells

    Linking human impacts to community processes in terrestrial and freshwater ecosystems.

    Get PDF
    Human impacts such as habitat loss, climate change and biological invasions are radically altering biodiversity, with greater effects projected into the future. Evidence suggests human impacts may differ substantially between terrestrial and freshwater ecosystems, but the reasons for these differences are poorly understood. We propose an integrative approach to explain these differences by linking impacts to four fundamental processes that structure communities: dispersal, speciation, species-level selection and ecological drift. Our goal is to provide process-based insights into why human impacts, and responses to impacts, may differ across ecosystem types using a mechanistic, eco-evolutionary comparative framework. To enable these insights, we review and synthesise (i) how the four processes influence diversity and dynamics in terrestrial versus freshwater communities, specifically whether the relative importance of each process differs among ecosystems, and (ii) the pathways by which human impacts can produce divergent responses across ecosystems, due to differences in the strength of processes among ecosystems we identify. Finally, we highlight research gaps and next steps, and discuss how this approach can provide new insights for conservation. By focusing on the processes that shape diversity in communities, we aim to mechanistically link human impacts to ongoing and future changes in ecosystems

    Device Performance of Emerging Photovoltaic Materials (Version 3)

    Get PDF
    Following the 2nd release of the “Emerging PV reports,” the best achievements in the performance of emerging photovoltaic devices in diverse emerging photovoltaic research subjects are summarized, as reported in peer-reviewed articles in academic journals since August 2021. Updated graphs, tables, and analyses are provided with several performance parameters, e.g., power conversion efficiency, open-circuit voltage, short-circuit current density, fill factor, light utilization efficiency, and stability test energy yield. These parameters are presented as a function of the photovoltaic bandgap energy and the average visible transmittance for each technology and application, and are put into perspective using, e.g., the detailed balance efficiency limit. The 3rd installment of the “Emerging PV reports” extends the scope toward triple junction solar cells

    Device Performance of Emerging Photovoltaic Materials (Version 1)

    Get PDF
    Emerging photovoltaics (PVs) focus on a variety of applications complementing large scale electricity generation. Organic, dye‐sensitized, and some perovskite solar cells are considered in building integration, greenhouses, wearable, and indoor applications, thereby motivating research on flexible, transparent, semitransparent, and multi‐junction PVs. Nevertheless, it can be very time consuming to find or develop an up‐to‐date overview of the state‐of‐the‐art performance for these systems and applications. Two important resources for recording research cells efficiencies are the National Renewable Energy Laboratory chart and the efficiency tables compiled biannually by Martin Green and colleagues. Both publications provide an effective coverage over the established technologies, bridging research and industry. An alternative approach is proposed here summarizing the best reports in the diverse research subjects for emerging PVs. Best performance parameters are provided as a function of the photovoltaic bandgap energy for each technology and application, and are put into perspective using, e.g., the Shockley–Queisser limit. In all cases, the reported data correspond to published and/or properly described certified results, with enough details provided for prospective data reproduction. Additionally, the stability test energy yield is included as an analysis parameter among state‐of‐the‐art emerging PVs
    • 

    corecore