31 research outputs found

    Characterization of a modular enzyme of exo-1,5-α-l-arabinofuranosidase and arabinan binding module from Streptomyces avermitilis NBRC14893

    Get PDF
    A gene encoding an α-l-arabinofuranosidase, designated SaAraf43A, was cloned from Streptomyces avermitilis. The deduced amino acid sequence implies a modular structure consisting of an N-terminal glycoside hydrolase family 43 module and a C-terminal family 42 carbohydrate-binding module (CBM42). The recombinant enzyme showed optimal activity at pH 6.0 and 45°C and was stable over the pH range of 5.0–6.5 at 30°C. The enzyme hydrolyzed p-nitrophenol (PNP)-α-l-arabinofuranoside but did not hydrolyze PNP-α-l-arabinopyranoside, PNP-β-d-xylopyranoside, or PNP-β-d-galactopyranoside. Debranched 1,5-arabinan was hydrolyzed by the enzyme but arabinoxylan, arabinogalactan, gum arabic, and arabinan were not. Among the synthetic regioisomers of arabinofuranobiosides, only methyl 5-O-α-l-arabinofuranosyl-α-l-arabinofuranoside was hydrolyzed by the enzyme, while methyl 2-O-α-l-arabinofuranosyl-α-l-arabinofuranoside and methyl 3-O-α-l-arabinofuranosyl-α-l-arabinofuranoside were not. These data suggested that the enzyme only cleaves α-1,5-linked arabinofuranosyl linkages. The analysis of the hydrolysis product of arabinofuranopentaose suggested that the enzyme releases arabinose in exo-acting manner. These results indicate that the enzyme is definitely an exo-1,5-α-l-arabinofuranosidase. The C-terminal CBM42 did not show any affinity for arabinogalactan and debranched arabinan, although it bound arabinan and arabinoxylan, suggesting that the CBM42 bound to branched arabinofuranosyl residues. Removal of the module decreased the activity of the enzyme with regard to debranched arabinan. The CBM42 plays a role in enhancing the debranched arabinan hydrolytic action of the catalytic module in spite of its preference for binding arabinofuranosyl side chains

    Use of vonoprazan for management of systemic sclerosis‑related gastroesophageal reflux disease

    Get PDF
    Gastroesophageal reflux disease (GERD) in systemic sclerosis (SSc) can significantly reduce a patient\u27s quality of life. GERD in SSc is occasionally resistant to conventional anti-acid treatment. Vonoprazan is an H+/K+-ATPase blocker that is approved in Japan for treatment of GERD. The aim of the present study was to evaluate the efficacy of vonoprazan in SSc-related GERD. The frequency scale for symptoms of GERD (FSSG) scores were collected before and after vono-prazan treatment in 15 SSc patients with GERD. Additionally, endoscopic esophagogastroduodenoscopy was performed in select patients. Conventional proton pump inhibitors or hista-mine-2 receptor antagonists had been previously administered in 93% (14/15) of the patients. Although the baseline esophago-gastroduodenoscopy examination did not show severe erosion in the majority of patients,the mean total FSSG score before vonoprazan treatment was notably high (25.2±10.7) compared to a normal score of <8. After vonoprazan treatment, the FSSG score decreased to 9.6±7.0. The mean improvement rate of the total FSSG, acid reflux and dysmotility scores were 60.8±21.2% (P=0.0004), 67.3±24.8% (P<0.0001) and 55.4±26.0% (P=0.0022), respectively.These results suggest that vonoprazan may be a potentially effective treatment for GERD in patients with SSc

    Role of ER Stress Response in Photodynamic Therapy: ROS Generated in Different Subcellular Compartments Trigger Diverse Cell Death Pathways

    Get PDF
    We have analyzed the molecular mechanisms of photoinduced cell death using porphyrins with similar structure differing only in the position of the ethylene glycol (EG) chain on the phenyl ring. Meta- and para-positioned EG chains targeted porphyrins to different subcellular compartments. After photoactivation, both types of derivatives induced death of tumor cells via reactive oxygen species (ROS). Para derivatives pTPP(EG)4 and pTPPF(EG)4 primarily accumulated in lysosomes activated the p38 MAP kinase cascade, which in turn induced the mitochondrial apoptotic pathway. In contrast, meta porphyrin derivative mTPP(EG)4 localized in the endoplasmic reticulum (ER) induced dramatic changes in Ca2+ homeostasis manifested by Ca2+ rise in the cytoplasm, activation of calpains and stress caspase-12 or caspase-4. ER stress developed into unfolded protein response. Immediately after irradiation the PERK pathway was activated through phosphorylation of PERK, eIF2α and induction of transcription factors ATF4 and CHOP, which regulate stress response genes. PERK knockdown and PERK deficiency protected cells against mTPP(EG)4-mediated apoptosis, confirming the causative role of the PERK pathway

    Characterization of an Endo-β-1,6-Galactanase from Streptomyces avermitilis NBRC14893▿

    No full text
    The putative endo-β-1,6-galactanase gene from Streptomyces avermitilis was cloned and expressed in Escherichia coli, and the enzymatic properties of the recombinant enzyme were characterized. The gene consisted of a 1,476-bp open reading frame and encoded a 491-amino-acid protein, comprising an N-terminal secretion signal sequence and glycoside hydrolase family 5 catalytic module. The recombinant enzyme, Sa1,6Gal5A, catalyzed the hydrolysis of β-1,6-linked galactosyl linkages of oligosaccharides and polysaccharides. The enzyme produced galactose and a range of β-1,6-linked galacto-oligosaccharides, predominantly β-1,6-galactobiose, from β-1,6-galactan chains. There was a synergistic effect between the enzyme and Sa1,3Gal43A in degrading tomato arabinogalactan proteins. These results suggest that Sa1,6Gal5A is the first identified endo-β-1,6-galactanase from a prokaryote
    corecore