1,316 research outputs found

    Cyclic creep and fatigue of TD-NiCr (thoria-dispersion-strengthened nickel-chromium), TD-Ni, and NiCr sheet at 1200 C

    Get PDF
    The resistance of thin TD-NiCr sheet to cyclic deformation was compared with that of TD-Ni and a conventional nickel-chromium alloy. Strains were determined by a calibration technique which combines room-temperature strain gage and deflection measurements with high-temperature deflection measurements. Analyses of the cyclic tests using measured tensile and creep-rupture data indicated that the TD-NiCr and NiCr alloy specimens failed by a cyclic creep mechanism. The TD-Ni specimens, on the other hand, failed by a fatigue mechanism

    Motion of condensates in non-Markovian zero-range dynamics

    Full text link
    Condensation transition in a non-Markovian zero-range process is studied in one and higher dimensions. In the mean-field approximation, corresponding to infinite range hopping, the model exhibits condensation with a stationary condensate, as in the Markovian case, but with a modified phase diagram. In the case of nearest-neighbor hopping, the condensate is found to drift by a "slinky" motion from one site to the next. The mechanism of the drift is explored numerically in detail. A modified model with nearest-neighbor hopping which allows exact calculation of the steady state is introduced. The steady state of this model is found to be a product measure, and the condensate is stationary.Comment: 31 pages, 9 figure

    Laser application to measure vertical sea temperature and turbidity, design phase

    Get PDF
    An experiment to test a new method was designed, using backscattered radiation from a laser beam to measure oceanographic parameters in a fraction of a second. Tyndall, Rayleigh, Brillouin, and Raman scattering all are utilized to evaluate the parameters. A beam from a continuous argon ion laser is used together with an interferometer and interference filters to gather the information. The results are checked by direct measurements. Future shipboard and airborne experiments are described

    From the zero-field metal-insulator transition in two dimensions to the quantum Hall transition: a percolation-effective-medium theory

    Full text link
    Effective-medium theory is applied to the percolation description of the metal-insulator transition in two dimensions with emphasis on the continuous connection between the zero-magnetic-field transition and the quantum Hall transition. In this model the system consists of puddles connected via saddle points, and there is loss of quantum coherence inside the puddles. The effective conductance of the network is calculated using appropriate integration over the distribution of conductances, leading to a determination of the magnetic field dependence of the critical density. Excellent quantitative agreement is obtained with the experimental data, which allows an estimate of the puddle physical parameters

    Autonomous decision-making against induced seismicity in deep fluid injections

    Full text link
    The rise in the frequency of anthropogenic earthquakes due to deep fluid injections is posing serious economic, societal, and legal challenges to geo-energy and waste-disposal projects. We propose an actuarial approach to mitigate this risk, first by defining an autonomous decision-making process based on an adaptive traffic light system (ATLS) to stop risky injections, and second by quantifying a "cost of public safety" based on the probability of an injection-well being abandoned. The ATLS underlying statistical model is first confirmed to be representative of injection-induced seismicity, with examples taken from past reservoir stimulation experiments (mostly from Enhanced Geothermal Systems, EGS). Then the decision strategy is formalized: Being integrable, the model yields a closed-form ATLS solution that maps a risk-based safety standard or norm to an earthquake magnitude not to exceed during stimulation. Finally, the EGS levelized cost of electricity (LCOE) is reformulated in terms of null expectation, with the cost of abandoned injection-well implemented. We find that the price increase to mitigate the increased seismic risk in populated areas can counterbalance the heat credit. However this "public safety cost" disappears if buildings are based on earthquake-resistant designs or if a more relaxed risk safety standard or norm is chosen.Comment: 8 pages, 4 figures, conference (International Symposium on Energy Geotechnics, 26-28 September 2018, Lausanne, Switzerland

    Idealized digital models for conical reed instruments, with focus on the internal pressure waveform

    No full text
    International audienceTwo models for the generation of self-oscillations of reed conical woodwinds are presented. They use the fewest parameters (of either the resonator or the ex-citer), whose influence can be quickly explored. The formulation extends iterated maps obtained for loss-less cylindrical pipes without reed dynamics. It uses spherical wave variables in idealized resonators, with one parameter more than for cylinders: the missing length of the cone. The mouthpiece volume equals that of the missing part of the cone, and is implemented as either a cylindrical pipe (first model) or a lumped element (second model). Only the first model adds a length parameter for the mouthpiece and leads to the solving of an implicit equation. For the second model, any shape of nonlinear characteristic can be directly considered. The complex characteristics impedance for spherical waves requires sampling times smaller than a round trip in the resonator. The convergence of the two models is shown when the length of the cylindrical mouthpiece tends to zero. The waveform is in semi-quantitative agreement with experiment. It is concluded that the oscillations of the positive episode of the mouthpiece pressure are related to the length of the missing part, not to the reed dynamics

    An Efficient Data Structure for Dynamic Two-Dimensional Reconfiguration

    Full text link
    In the presence of dynamic insertions and deletions into a partially reconfigurable FPGA, fragmentation is unavoidable. This poses the challenge of developing efficient approaches to dynamic defragmentation and reallocation. One key aspect is to develop efficient algorithms and data structures that exploit the two-dimensional geometry of a chip, instead of just one. We propose a new method for this task, based on the fractal structure of a quadtree, which allows dynamic segmentation of the chip area, along with dynamically adjusting the necessary communication infrastructure. We describe a number of algorithmic aspects, and present different solutions. We also provide a number of basic simulations that indicate that the theoretical worst-case bound may be pessimistic.Comment: 11 pages, 12 figures; full version of extended abstract that appeared in ARCS 201
    • …
    corecore