1,765 research outputs found

    Review of the AGARD S and M panel evaluation program of the NASA-Lewis SRP approach to high-temperature LCF life prediction

    Get PDF
    Twenty laboratories in six countries participated in testing their own materials of interest under their own laboratory conditions. In this way the results obtained provided validation of the Strainrange Partitioning (SRP) method for a wide range of materials and insured maximum usefulness to each of the participating laboratories. The various investigators shared their findings, thus providing the basis for an in-depth evaluation of the SRP method. While the results were variable from laboratory to laboratory, most investigators agreed that the SRP method was a significant step toward life prediction in the presence of high temperature and cyclic stresses

    Self-organizing lists on the Xnet

    Get PDF
    The first parallel designs for implementing self-organizing lists on the Xnet interconnection network are presented. Self-organizing lists permute the order of list entries after an entry is accessed according to some update hueristic. The heuristic attempts to place frequently requested entries closer to the front of the list. This paper outlines Xnet systems for self-organizing lists under the move-to-front and transpose update heuristics. Our novel designs can be used to achieve high-speed lossless text compression

    Diffusion in a logarithmic potential: scaling and selection in the approach to equilibrium

    Full text link
    The equation which describes a particle diffusing in a logarithmic potential arises in diverse physical problems such as momentum diffusion of atoms in optical traps, condensation processes, and denaturation of DNA molecules. A detailed study of the approach of such systems to equilibrium via a scaling analysis is carried out, revealing three surprising features: (i) the solution is given by two distinct scaling forms, corresponding to a diffusive (x ~ \sqrt{t}) and a subdiffusive (x >> \sqrt{t}) length scales, respectively; (ii) the scaling exponents and scaling functions corresponding to both regimes are selected by the initial condition; and (iii) this dependence on the initial condition manifests a "phase transition" from a regime in which the scaling solution depends on the initial condition to a regime in which it is independent of it. The selection mechanism which is found has many similarities to the marginal stability mechanism which has been widely studied in the context of fronts propagating into unstable states. The general scaling forms are presented and their practical and theoretical applications are discussed.Comment: 42 page

    Density profiles, dynamics, and condensation in the ZRP conditioned on an atypical current

    Full text link
    We study the asymmetric zero-range process (ZRP) with L sites and open boundaries, conditioned to carry an atypical current. Using a generalized Doob h-transform we compute explicitly the transition rates of an effective process for which the conditioned dynamics are typical. This effective process is a zero-range process with renormalized hopping rates, which are space dependent even when the original rates are constant. This leads to non-trivial density profiles in the steady state of the conditioned dynamics, and, under generic conditions on the jump rates of the unconditioned ZRP, to an intriguing supercritical bulk region where condensates can grow. These results provide a microscopic perspective on macroscopic fluctuation theory (MFT) for the weakly asymmetric case: It turns out that the predictions of MFT remain valid in the non-rigorous limit of finite asymmetry. In addition, the microscopic results yield the correct scaling factor for the asymmetry that MFT cannot predict.Comment: 26 pages, 4 figure

    Strainrange partitioning: A tool for characterizing high temperature low cycle fatigue

    Get PDF
    The basic concepts of strain range partitioning are reviewed and the areas requiring for expanded verification are detailed. A suggested cooperative evaluation program involves the verification of the four basic life relationships (for PP, CC, PC, and CP type inelastic strain ranges) for a variety of materials that are of direct interest to the participating organizations

    Use of strainrange partitioning to predict high temperature low-cycle fatigue life

    Get PDF
    The fundamental concepts of the strainrange partitioning approach to high temperature, low low-cycle fatigue are reviewed. Procedures are presented by which the partitioned strainrange versus life relationships for any material can be generated. Laboratory tests are suggested for further verifying the ability of the method of strainrange partitioning to predict life

    Low cycle fatigue of notched specimens by consideration of crack initiation and propagation

    Get PDF
    Low cycle fatigue of notched steel and aluminum alloy specimens by consideration of crack initiation and propagatio

    Subtree weight ratios for optimal binary search trees

    Get PDF
    For an optimal binary search tree T with a subtree S(d) at a distance d from the root of T, we study the ratio of the weight of S(d) to the weight of T. The maximum possible value, which we call ρ(d), of the ratio of weights, is found to have an upper bound of 2/F_d+3 where F_i is the ith Fibonacci number. For d = 1, 2, 3, and 4, the bound is shown to be tight. For larger d, the Fibonacci bound gives ρ(d) = O(ϕ^d) where ϕ ~ .61803 is the golden ratio. By giving a particular set of optimal trees, we prove ρ(d) = Ω((.58578 ... )^d), and believe a similar proof follows for ρ(d) = Ω((.60179 ... )^d). If we include frequencies for unsuccessful searches in the optimal binary search trees, the Fibonacci bound is found to be tight

    Motion of condensates in non-Markovian zero-range dynamics

    Full text link
    Condensation transition in a non-Markovian zero-range process is studied in one and higher dimensions. In the mean-field approximation, corresponding to infinite range hopping, the model exhibits condensation with a stationary condensate, as in the Markovian case, but with a modified phase diagram. In the case of nearest-neighbor hopping, the condensate is found to drift by a "slinky" motion from one site to the next. The mechanism of the drift is explored numerically in detail. A modified model with nearest-neighbor hopping which allows exact calculation of the steady state is introduced. The steady state of this model is found to be a product measure, and the condensate is stationary.Comment: 31 pages, 9 figure
    corecore