16,036 research outputs found

    Determining R-parity violating parameters from neutrino and LHC data

    Full text link
    In supersymmetric models neutrino data can be explained by R-parity violating operators which violate lepton number by one unit. The so called bilinear model can account for the observed neutrino data and predicts at the same time several decay properties of the lightest supersymmetric particle. In this paper we discuss the expected precision to determine these parameters by combining neutrino and LHC data and discuss the most important observables. We show that one can expect a rather accurate determination of the underlying R-parity parameters assuming mSUGRA relations between the R-parity conserving ones and discuss briefly also the general MSSM as well as the expected accuracies in case of a prospective e+ e- linear collider. An important observation is that several parameters can only be determined up to relative signs or more generally relative phases.Comment: 13 pages, 13 figure

    Spherical agglomeration of superconducting and normal microparticles with and without applied electric field

    Full text link
    It was reported by R. Tao and coworkers that in the presence of a strong electric field superconducting microparticles assemble into balls of macroscopic dimensions. Such a finding has potentially important implications for the understanding of the fundamental physics of superconductors. However, we report here the results of experimental studies showing that (i) ball formation also occurs in the absence of an applied electric field, (ii) the phenomenon also occurs at temperatures above the superconducting transition temperature, and (iii) it can also occur for non-superconducting materials. Possible origins of the phenomenon are discussed.Comment: Small changes in response to referee's comments. To be published in Phys. Rev.

    Invisible Higgs Boson Decays in Spontaneously Broken R-Parity

    Get PDF
    The Higgs boson may decay mainly to an invisible mode characterized by missing energy, instead of the Standard Model channels. This is a generic feature of many models where neutrino masses arise from the spontaneous breaking of ungauged lepton number at relatively low scales, such as spontaneously broken R-parity models. Taking these models as framework, we reanalyze this striking suggestion in view of the recent data on neutrino oscillations that indicate non-zero neutrino masses. We show that, despite the smallness of neutrino masses, the Higgs boson can decay mainly to the invisible Goldstone boson associated to the spontaneous breaking of lepton number. This requires a gauge singlet superfield coupling to the electroweak doublet Higgses, as in the Next to Minimal Supersymmetric Standard Model (NMSSM) scenario for solving the μ\mu-problem. The search for invisibly decaying Higgs bosons should be taken into account in the planning of future accelerators, such as the Large Hadron Collider and the Next Linear Collider.Comment: 24 pages, 10 figures; typos corrected, published versio

    Electromotive forces and the Meissner effect puzzle

    Get PDF
    In a voltaic cell, positive (negative) ions flow from the low (high) potential electrode to the high (low) potential electrode, driven by an `electromotive force' which points in opposite direction and overcomes the electric force. Similarly in a superconductor charge flows in direction opposite to that dictated by the Faraday electric field as the magnetic field is expelled in the Meissner effect. The puzzle is the same in both cases: what drives electric charges against electromagnetic forces? I propose that the answer is also the same in both cases: kinetic energy lowering, or `quantum pressure'

    New Leptoquark Mechanism of Neutrinoless Double Beta Decay

    Get PDF
    A new mechanism for neutrinoless double beta (\znbb) decay based on leptoquark exchange is discussed. Due to the specific helicity structure of the effective four-fermion interaction this contribution is strongly enhanced compared to the well-known mass mechanism of \znbb decay. As a result the corresponding leptoquark parameters are severely constrained from non-observation of \znbb-decay. These constraints are more stringent than those derived from other experiments.Comment: LaTeX, 6 pages, 1 figur

    R-parity Conserving Supersymmetry, Neutrino Mass and Neutrinoless Double Beta Decay

    Get PDF
    We consider contributions of R-parity conserving softly broken supersymmetry (SUSY) to neutrinoless double beta (\znbb) decay via the (B-L)-violating sneutrino mass term. The latter is a generic ingredient of any weak-scale SUSY model with a Majorana neutrino mass. The new R-parity conserving SUSY contributions to \znbb are realized at the level of box diagrams. We derive the effective Lagrangian describing the SUSY-box mechanism of \znbb-decay and the corresponding nuclear matrix elements. The 1-loop sneutrino contribution to the Majorana neutrino mass is also derived. Given the data on the \znbb-decay half-life of 76^{76}Ge and the neutrino mass we obtain constraints on the (B-L)-violating sneutrino mass. These constraints leave room for accelerator searches for certain manifestations of the 2nd and 3rd generation (B-L)-violating sneutrino mass term, but are most probably too tight for first generation (B-L)-violating sneutrino masses to be searched for directly.Comment: LATEX, 29 pages + 4 (uuencoded) figures appende

    Supersymmetric seesaw type II: CERN LHC and lepton flavour violating phenomenology

    Full text link
    We study the supersymmetric version of the type-II seesaw mechanism assuming minimal supergravity boundary conditions. We calculate branching ratios for lepton flavour violating (LFV) scalar tau decays, potentially observable at the LHC, as well as LFV decays at low energy, such as lilj+γl_i \to l_j + \gamma and compare their sensitivity to the unknown seesaw parameters. In the minimal case of only one triplet coupling to the standard model lepton doublets, ratios of LFV branching ratios can be related unambigously to neutrino oscillation parameters. We also discuss how measurements of soft SUSY breaking parameters at the LHC can be used to indirectly extract information of the seesaw scale.Comment: 25 pages, 14 figures, references and appendix added, minor corrections; final version published in Phys.Rev.

    Irreducible Hamiltonian BRST approach to topologically coupled abelian forms

    Get PDF
    An irreducible Hamiltonian BRST approach to topologically coupled p- and (p+1)-forms is developed. The irreducible setting is enforced by means of constructing an irreducible Hamiltonian first-class model that is equivalent from the BRST point of view to the original redundant theory. The irreducible path integral can be brought to a manifestly Lorentz covariant form.Comment: 29 pages, LaTeX 2.0

    A Note on "Irreducible" p-Form Gauge Theories with Stueckelberg Coupling

    Get PDF
    p-form gauge theories with Stueckelberg coupling are quantized in an irreducible antifield-BRST way. As a consequence, neither the ghosts of ghosts nor their antifields appear. Some irreducible gauge conditions are inferred naturally within our formalism. In the end we briefly discuss the interacting case.Comment: 10 pag, latex 2.09, no figure

    Accurate Noise Projection for Reduced Stochastic Epidemic Models

    Full text link
    We consider a stochastic Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological model. Through the use of a normal form coordinate transform, we are able to analytically derive the stochastic center manifold along with the associated, reduced set of stochastic evolution equations. The transformation correctly projects both the dynamics and the noise onto the center manifold. Therefore, the solution of this reduced stochastic dynamical system yields excellent agreement, both in amplitude and phase, with the solution of the original stochastic system for a temporal scale that is orders of magnitude longer than the typical relaxation time. This new method allows for improved time series prediction of the number of infectious cases when modeling the spread of disease in a population. Numerical solutions of the fluctuations of the SEIR model are considered in the infinite population limit using a Langevin equation approach, as well as in a finite population simulated as a Markov process.Comment: 38 pages, 10 figures, new title, Final revision to appear in Chao
    corecore