7 research outputs found

    Dynamic combinatorial chemistry to identify binders of ThiT, an S-component of the energy-coupling factor transporter for thiamine

    Get PDF
    We applied dynamic combinatorial chemistry (DCC) to identify ligands of ThiT, the S-component of the energy-coupling factor (ECF) transporter for thiamine in Lactococcus lactis. We used a pre-equilibrated dynamic combinatorial library (DCL) and saturation-transfer difference (STD) NMR spectroscopy to identify ligands of ThiT. This is the first report in which DCC is used for fragment growing to an ill-defined pocket, and one of the first reports for its application with an integral membrane protein as target

    pH-Dependent morphology and optical properties of lysine-derived molecular biodynamers

    No full text
    International audienceThe spherical micelles of the carbazole monomer transformed into nanorods in the course of the polymerization. The polymeric nanorods show pH-dependent changes in fluorescence emission and size

    Unlocking the Antiviral Arsenal: Multiparametric Optimization of Small-Molecule Inhibitors against RSV and hCoV-229E

    No full text
    Acute respiratory diseases in humans can be caused by various viral pathogens such as respiratory syncytial virus (RSV), human coronavirus 229E (hCoV-229E), and severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2). To prevent severe cases by an early treatment, one effective strategy is to inhibit viral infection at the entry stage of the replication cycle. However, there is a lack of efficient, FDA-approved small molecule drugs targeting these pathogens. Previously, we identified two dual RSV/hCoV-229E small molecule inhibitors with activity in the single-digit micromolar range. In this study, we focused on optimizing the more promising starting point using a multiparametric hit optimization approach. Here, we present the results, including valuable insights into the structure activity relationship (SAR), and report the discovery of a submicromolar RSV entry inhibitor and a highly potent compound against hCoV-229E

    Inhibitors of the Elastase LasB for the treatment of Pseudomonas aeruginosa lung infections

    No full text
    Infections caused by the Gram-negative pathogen Pseudomonas aeruginosa are emerging worldwide as a major threat to human health. Conventional antibiotic monotherapy suffers from rapid resistance development, underlining urgent need for novel treatment concepts. Here, we report on a non-traditional approach to combat P. aeruginosa-derived infections by targeting its main virulence factor, the elastase LasB. We discovered a new chemical class of phosphonates with an outstanding in vitro ADMET and PK profile, auspicious activity both in vitro and in vivo. We established the mode of action through a co-crystal structure of our lead compound with LasB and in several in vitro and ex vivo models. The proof of concept of a combination of our pathoblocker with levofloxacin in a murine neutropenic lung infection model and the reduction of LasB protein levels in blood as a proof of target engagement demonstrate the great potential for use as an adjunctive treatment of lung infections in humans

    A New PqsR Inverse Agonist Potentiates Tobramycin Efficacy to Eradicate Pseudomonas aeruginosa Biofilms

    Get PDF
    Pseudomonas aeruginosa (PA) infections can be notoriously difficult to treat and are often accompanied by the development of antimicrobial resistance (AMR). Quorum sensing inhibitors (QSI) acting on PqsR (MvfR) – a crucial transcriptional regulator serving major functions in PA virulence – can enhance antibiotic efficacy and eventually prevent the AMR. An integrated drug discovery campaign including design, medicinal chemistry‐driven hit‐to‐lead optimization and in‐depth biological profiling of a new QSI generation is reported. The QSI possess excellent activity in inhibiting pyocyanin production and PqsR reporter‐gene with IC50 values as low as 200 and 11 × 10−9 m, respectively. Drug metabolism and pharmacokinetics (DMPK) as well as safety pharmacology studies especially highlight the promising translational properties of the lead QSI for pulmonary applications. Moreover, target engagement of the lead QSI is shown in a PA mucoid lung infection mouse model. Beyond that, a significant synergistic effect of a QSI‐tobramycin (Tob) combination against PA biofilms using a tailor‐made squalene‐derived nanoparticle (NP) formulation, which enhance the minimum biofilm eradicating concentration (MBEC) of Tob more than 32‐fold is demonstrated. The novel lead QSI and the accompanying NP formulation highlight the potential of adjunctive pathoblocker‐mediated therapy against PA infections opening up avenues for preclinical development.H2020 Marie SkƂodowska-Curie Action
    corecore