138 research outputs found
New Strategy of Functional Analysis of PHGPx Knockout Mice Model Using Transgenic Rescue Method and Cre-LoxP System
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is an intracellular antioxidant enzyme that directly reduces peroxidized phospholipids. PHGPx is transcribed from one gene into three types of mRNA, mitochondrial, non-mitochondrial and nucleolar PHGPx by alternative transcription. In this review, we focus on our recent experiments on the regulation of promoter activity of the types of PHGPx and on the novel strategy of functional analysis of a PHGPx knockout mice model using the transgenic rescue method and Cre-LoxP system. PHGPx is especially high in testis and spermatozoa. A deficiency is implicated in human infertility. We established spermatocyte-specific PHGPx knockout (KO) mice using a Cre-loxP system. Targeted disruption of all exons of the PHGPx gene in mice by homologous recombination caused embryonic lethality at 7.5 days post coitum. The PHGPx-loxP transgene rescued PHGPx KO mice from embryonic lethality. These rescued floxed PHGPx mice were mated with spermatocyte specific Cre expressing mice. All the spermatocyte-specific PHGPx KO male mice were infertile and displayed a significant decrease in the number of spermatozoa and significant reductions in forward motility by mitochondrial dysfunction of spermatozoa. These results demonstrate that depletion of PHGPx in spermatozoa may be one of the causes of male infertility in mice and humans
Gestures for Manually Controlling a Helping Hand Robot
Helping hand robots have been the focus of a number of studies and have high potential in modern manufacturing processes and for use in daily living. As helping hand robots interact closely with users, it is important to find natural and intuitive user interfaces for interacting with the robots in various situations. This study describes a set of gestures for interacting with and controlling helping hand robots in situations in which users need to manually control the robot but both hands are not available, for example, when users are holding tools or objects in their hands. The gestures are derived from an experimental study that asked participants for gestures suitable for controlling primitive robot motions. The selected gestures can be used to control translation and orientation of an end effector of a helping hand robot when one or both hands are engaged with tasks. As an example for validating the proposed gestures, we implemented a helping hand robot system to perform a soldering task
Mortality and life expectancy of Yokkaichi Asthma patients, Japan: Late effects of air pollution in 1960–70s
<p>Abstract</p> <p>Background</p> <p>The incidence of chronic obstructive pulmonary disease (COPD) and bronchial asthma began increasing in early 1960s in the population of Yokkaichi-city (Mie Prefecture, Japan). The cause of the disease was sulfur oxide air pollution, and it is known as Yokkaichi Asthma. The pollution markedly decreased by the end of 1970s; no new cases have been reported since 1988. This study aimed at examining the late effects of air pollution on the health of Yokkaichi Asthma patients.</p> <p>Methods</p> <p>Mortality rate and life expectancy of patients, registered between 1965 and 1988, were investigated from 1975 through 2000.</p> <p>Results</p> <p>Mortality rates for COPD and asthma in patients from Yokkaichi-city were significantly higher than in the whole population of Mie Prefecture. For all ages (except for males between 80 and 84 years in 1985), the life expectancy of both males and females were significantly reduced in patients from Yokkaichi-city as compared with the whole population of Mie Prefecture. The potential gains in life expectancy excluding the mortality for respiratory diseases including COPD and asthma were larger for all ages in patients from Yokkaichi-city.</p> <p>Conclusion</p> <p>Mortality and life expectancy were adversely affected in patients from Yokkaichi-city, despite the fact that the air pollution problem has been already solved.</p
Proteomic Analysis of Growth Phase-Dependent Expression of Legionella pneumophila Proteins Which Involves Regulation of Bacterial Virulence Traits
Legionella pneumophila, which is a causative pathogen of Legionnaires' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE) combined with Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry (MALDI-TOF-MS). Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB) biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins) were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs). Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
- …