636 research outputs found
Three neural groups in the femoral chordotonal organ of the cricket Gryllus bimaculatus: Central projections and soma arrangement and displacement during joint flexion
The arrangement of neuronal somata and their
displacement during joint flexion together with the central projection of the pro- and metathoracic femoral chordotonal organs (FCOs) in the cricket were investigated. The FCO consists of the partially fused ventral and dorsal scoloparia in the proximal femur. The
ventrally located neurones (the ventral group) form chainlike rows in which somata became sequentially smallerdistally and project their axons ipsilaterally to the dorsolateral
regions, giving off abundant branches and
terminating in the region between the dorsal intermediatetract and the ventral intermediate tract in the thoracichemiganglion. The dorsal scoloparium, composed of small,simply aggregated neurones, projects exclusively to the medioventral association centre (mVAC), which is known to be an auditory neuropile. In addition, another neural cluster (the dorsal group) was found in the proximo-dorsal region of the ventral scoloparium. This was composed of
simply aggregated neurones with axons giving off sparse branches dorso-laterally and terminating in the peripheral region inside the mVAC. The somata of these three groups were displaced distally by flexion of the femoro-tibial joint:
the ventral group showed the greatest displacement, with the degree of movement depending upon soma location, while the dorsal group and dorsal scoloparium neurones were hardly displaced, possibly because of their strong connection with the cuticle. These properties were similar in both the prothoracic FCO and the metathoracic FCO. Taken together, the above points suggest that there is
greater functional differentiation of the FCO than was previously thought
Alarm Pheromone Processing in the Ant Brain: An Evolutionary Perspective
Social insects exhibit sophisticated communication by means of pheromones, one example of which is the use of alarm pheromones to alert nestmates for colony defense. We review recent advances in the understanding of the processing of alarm pheromone information in the ant brain. We found that information about formic acid and n-undecane, alarm pheromone components, is processed in a set of specific glomeruli in the antennal lobe of the ant Camponotus obscuripes. Alarm pheromone information is then transmitted, via projection neurons (PNs), to the lateral horn and the calyces of the mushroom body of the protocerebrum. In the lateral horn, we found a specific area where terminal boutons of alarm pheromone-sensitive PNs are more densely distributed than in the rest of the lateral horn. Some neurons in the protocerebrum responded specifically to formic acid or n-undecane and they may participate in the control of behavioral responses to each pheromone component. Other neurons, especially those originating from the mushroom body lobe, responded also to non-pheromonal odors and may play roles in integration of pheromonal and non-pheromonal signals. We found that a class of neurons receive inputs in the lateral horn and the mushroom body lobe and terminate in a variety of premotor areas. These neurons may participate in the control of aggressive behavior, which is sensitized by alarm pheromones and is triggered by non-pheromonal sensory stimuli associated with a potential enemy. We propose that the alarm pheromone processing system has evolved by differentiation of a part of general odor processing system
Chordotonal organs in hemipteran insects: unique peripheral structures but conserved central organization revealed by comparative neuroanatomy
Hemipteran insects use sophisticated vibrational communications by striking body appendages on the substrate or by oscillating the abdominal tymbal. There has been, however, little investigation of sensory channels for processing vibrational signals. Using sensory nerve stainings and low invasive confocal analyses, we demonstrate the comprehensive neuronal mapping of putative vibration-responsive chordotonal organs (COs) in stink bugs (Pentatomidae and Cydinidae) and cicadas (Cicadidae). The femoral CO (FCO) in stink bugs consists of ventral and dorsal scoloparia, homologous to distal and proximal scoloparia in locusts, which are implicated in joint movement detection and vibration detection, respectively. The ligament of the dorsal scoloparium is distally attached to the accessory extensor muscle, whereas that of the ventral scoloparium is attached to a specialized tendon. Their afferents project to the dorso-lateral neuropil and the central region of the medial ventral association center (mVAC) in the ipsilateral neuromere, where presumed dorsal scoloparium afferents and subgenual organ afferents are largely intermingled. In contrast, FCOs in cicadas have decreased dorsal scoloparium neurons and lack projections to the mVAC. The tymbal CO of stink bugs contains four sensory neurons that are distally attached to fat body cells via a ligament. Their axons project intersegmentally to the dorsal region of mVACs in all neuromeres. Together with comparisons of COs in different insect groups, the results suggest that hemipteran COs have undergone structural modification for achieving faster signaling of resonating peripheral tissues. The conserved projection patterns of COs suggest functional importance of the FCO and subgenual organ for vibrational communications
Finite- scaling analysis of Berezinskii-Kosterlitz-Thouless phase transitions and entanglement spectrum for the six-state clock model
We investigate the Berezinskii-Kosterlitz-Thouless transitions for the
square-lattice six-state clock model with the corner-transfer matrix
renormalization group (CTMRG). Scaling analyses for effective correlation
length, magnetization, and entanglement entropy with respect to the cutoff
dimension at the fixed point of CTMRG provide transition temperatures
consistent with a variety of recent numerical studies. We also reveal that the
fixed point spectrum of the corner transfer matrix in the critical intermediate
phase of the six-state clock model is characterized by the scaling dimension
consistent with the boundary conformal field theory associated with the
effective dual sine-Gordon model.Comment: 7 pages, 7 figures, to appear in Phys. Rev.
- …