12 research outputs found

    Dedifferentiated liposarcoma with leukocytosis. A case report of G-CSF-producing soft-tissue tumors, possible association with undifferentiated liposarcoma lineage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Granulocyte-colony-stimulating factor (G-CSF) functions as a hematopoietic growth factor and it is responsible for leukocytosis. G-CSF-producing tumors associated with leukocytosis include various types of malignancies.</p> <p>Case presentation</p> <p>We report the case of a 72-year-old man with dedifferentiated liposarcoma characterized by dedifferentiated components of malignant fibrous histiocytoma (MFH)-like features in addition to well-differentiated lipoma-like liposarcoma, arising from his upper arm. Preoperative laboratory data showed leukocytosis (103,700/μl). The serum level of G-CSF was also elevated (620 pg/ml [normal, <8 pg/ml]). Nine days after the surgery, the leukocytosis was relieved (WBC; 6,920/μl) and the elevated serum G-CSF level was significantly decreased (G-CSF; 12 pg/ml). One month after the surgery, leukocytosis gradually began to appear again. Three months after the surgery metastatic lung lesions were confirmed, and the patient subsequently died of respiratory problems. In the English literature regarding soft-tissue tumors with leukocytosis, including the current case, we could review a total of 6 cases of liposarcoma with leukocytosis. The subtype of these 6 liposarcoma cases was undifferentiated liposarcoma, comprising dedifferentiated liposarcoma in 4 cases and pleomorphic liposarcoma in 2 cases.</p> <p>Conclusion</p> <p>Since the only other soft-tissue tumor that was associated with leukocytosis was MFH, and since MFH is characterized by the absence of any specific differentiation, we would like to propose a possible association between G-CSF-producing soft-tissue tumors and an undifferentiated liposarcoma lineage, such as dedifferentiated liposarcoma or pleomorphic liposarcoma.</p

    Serum miR-379 expression is related to the development and progression of hypercholesterolemia in non-alcoholic fatty liver disease.

    No full text
    INTRODUCTION:Non-alcoholic fatty liver disease (NAFLD) has a wide spectrum, eventually leading to cirrhosis and hepatic carcinogenesis. We previously reported that a series of microRNAs (miRNAs) mapped in the 14q32.2 maternally imprinted gene region (Dlk1-Dio3 mat) are related to NAFLD development and progression in a mouse model. We examined the suitability of miR-379, a circulating Dlk1-Dio3 mat miRNA, as a human NAFLD biomarker. METHODS:Eighty NAFLD patients were recruited for this study. miR-379 was selected from the putative Dlk1-Dio3 mat miRNA cluster because it exhibited the greatest expression difference between NAFLD and non-alcoholic steatohepatitis in our preliminary study. Real-time PCR was used to examine the expression levels of miR-379 and miR-16 as an internal control. One patient was excluded due to low RT-PCR signal. RESULTS:Compared to normal controls, serum miR-379 expression was significantly up-regulated in NAFLD patients. Receiver operating characteristic curve analysis suggested that miR-379 is a suitable marker for discriminating NAFLD patients from controls, with an area under the curve value of 0.72. Serum miR-379 exhibited positive correlations with alkaline phosphatase, total cholesterol, low-density-lipoprotein cholesterol and non-high-density-lipoprotein cholesterol levels in patients with early stage NAFLD (Brunt fibrosis stage 0 to 1). The correlation between serum miR-379 and cholesterol levels was lost in early stage NAFLD patients treated with statins. Software-based predictions indicated that various energy metabolism-related genes, including insulin-like growth factor-1 (IGF-1) and IGF-1 receptor, are potential targets of miR-379. CONCLUSIONS:Serum miR-379 exhibits high potential as a biomarker for NAFLD. miR-379 appears to increase cholesterol lipotoxicity, leading to the development and progression of NAFLD, via interference with the expression of target genes, including those related to the IGF-1 signaling pathway. Our results could facilitate future research into the pathogenesis, diagnosis, and treatment of NAFLD

    Effectiveness of primary series, first, and second booster vaccination of monovalent mRNA COVID-19 vaccines against symptomatic SARS-CoV-2 infections and severe diseases during the SARS-CoV-2 omicron BA.5 epidemic in Japan: vaccine effectiveness real-time surveillance for SARS-CoV-2 (VERSUS)

    No full text
    Background: This study aimed to evaluate VE of primary, first, and second booster ancestral-strain monovalent mRNA COVID-19 vaccination against symptomatic infections and severe diseases in Japan. Methods: We conducted a test-negative case-control study. We included medically attended episodes and hospitalizations involving individuals aged ≥ 16 with signs and symptoms from July to November 2022, when Omicron BA.5 was dominant nationwide. To evaluate VE, we calculated adjusted ORs of vaccination among test-positive versus test-negative individuals using a mixed-effects logistic regression. Results: For VE against symptomatic infections among individuals aged 16 to 59, VE of primary vaccination at > 180 days was 26.1% (95% CI: 10.6–38.8%); VE of the first booster was 58.5% (48.4–66.7%) at ≤ 90 days, decreasing to 41.1% (29.5–50.8%) at 91 to 180 days. For individuals aged ≥ 60, VE of the first booster was 42.8% (1.7–66.7%) at ≤ 90 days, dropping to 15.4% (−25.9–43.2%) at 91 to 180 days, and then increasing to 44.0% (16.4–62.5%) after the second booster. For VE against severe diseases, VE of the first and second booster was 77.3% (61.2–86.7%) at ≤ 90 days and 55.9% (23.4–74.6%) afterward. Conclusion: mRNA booster vaccination provided moderate protection against symptomatic infections and high-level protection against severe diseases during the BA.5 epidemic in Japan.Expert Review of Vaccines, 23(1), pp.213-225; 202
    corecore