2,926 research outputs found

    Phytohaemagglutinin on maternal and umbilical leukocytes

    Get PDF
    Almost all the umbilical lymphocytes showed more extensive blast cell formation than that of their mother's lymphocytes with PHA. Pathological conditions of mother in pregnancy and labor such as anemia, gestational toxicosis, difficult labor and asphyxia of babies, inhibited the normal response of both maternal and umbilical lymphocytes to PHA.</p

    Parametrization of nuclear parton distributions

    Full text link
    Optimum nuclear parton distributions are obtained by analyzing available experimental data on electron and muon deep inelastic scattering (DIS). The distributions are given at Q^2=1 GeV^2 with a number of parameters, which are determined by a chi^2 analysis of the data. Valence-quark distributions are relatively well determined at medium x, but they are slightly dependent on the assumed parametrization form particularly at small x. Although antiquark distributions are shadowed at small x, their behavior is not obvious at medium x from the F_2 data. The gluon distributions could not be restricted well by the inclusive DIS data; however, the analysis tends to support the gluon shadowing at small x. We provide analytical expressions and computer subroutines for calculating the nuclear parton distributions, so that other researchers could use them for applications to other high-energy nuclear reactions.Comment: 1+11 pages, LaTeX, amsmath.sty, wrapfig.sty, graphicx.sty, ias.cls, ias.sty, pramana.sty, pmana10.sty, pbib.sty, times.sty, 9 eps figures. Invited talk given at the International Symposium on Nuclear Physics, Mumbai, India, Dec. 18-22, 2000, to be published in proceedings. Complete postscript file is available at http://www-hs.phys.saga-u.ac.jp Email: [email protected], [email protected], [email protected]

    Silencing mutant ataxin-3 rescues motor deficits and neuropathology in machado-joseph disease transgenic mice.

    Get PDF
    Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 (SCA3) is an autosomal dominantly-inherited neurodegenerative disorder caused by the over-repetition of a CAG codon in the MJD1 gene. This expansion translates into a polyglutamine tract that confers a toxic gain-of-function to the mutant protein - ataxin-3, leading to neurodegeneration in specific brain regions, with particular severity in the cerebellum. No treatment able to modify the disease progression is available. However, gene silencing by RNA interference has shown promising results. Therefore, in this study we investigated whether lentiviral-mediated allele-specific silencing of the mutant ataxin-3 gene, after disease onset, would rescue the motor behavior deficits and neuropathological features in a severely impaired transgenic mouse model of MJD. For this purpose, we injected lentiviral vectors encoding allele-specific silencing-sequences (shAtx3) into the cerebellum of diseased transgenic mice expressing the targeted C-variant of mutant ataxin-3 present in 70% of MJD patients. This variation permits to discriminate between the wild-type and mutant forms, maintaining the normal function of the wild-type allele and silencing only the mutant form. Quantitative analysis of rotarod performance, footprint and activity patterns revealed significant and robust alleviation of gait, balance (average 3-fold increase of rotarod test time), locomotor and exploratory activity impairments in shAtx3-injected mice, as compared to control ones injected with shGFP. An important improvement of neuropathology was also observed, regarding the number of intranuclear inclusions, calbindin and DARPP-32 immunoreactivity, fluorojade B and Golgi staining and molecular and granular layers thickness. These data demonstrate for the first time the efficacy of gene silencing in blocking the MJD-associated motor-behavior and neuropathological abnormalities after the onset of the disease, supporting the use of this strategy for therapy of MJD

    Compatibility of neutrino DIS data and global analyses of parton distribution functions

    Full text link
    Neutrino\antineutrino deep inelastic scattering (DIS) data provide useful constrains for the flavor decomposition in global fits of parton distribution functions (PDF). The smallness of the cross-sections requires the use of nuclear targets in the experimental setup. Understanding the nuclear corrections is, for this reason, of utmost importance for a precise determination of the PDFs. Here, we explore the nuclear effects in the neutrino\antineutrino-nucleon DIS by comparing the NuTeV, CDHSW, and CHORUS cross-sections to the predictions derived from the latest parton distribution functions and their nuclear modifications. We obtain a good description of these data and find no apparent disagreement between the nuclear effects in neutrino DIS and those in charged lepton DIS. These results also indicate that further improvements in the knowledge of the nuclear PDFs could be obtained by a more extensive use of these sets of neutrino data.Comment: 16 pages, 8 figure

    Ruthenocuprates RuSr2(Eu,Ce)2Cu2O10: Intrinsic magnetic multilayers

    Full text link
    We report ac susceptibility data on RuSr_2(Eu,Ce)_2Cu_2O_(10-y) (Ru-1222, Ce content x=0.5 and 1.0), RuSr_2GdCu_2O_8 (Ru-1212) and SrRuO_3. Both Ru-1222 (x=0.5, 1.0) sample types exhibit unexpected magnetic dynamics in low magnetic fields: logarithmic time relaxation, switching behavior, and `inverted' hysteresis loops. Neither Ru-1212 nor SrRuO_3 exhibit such magnetic dynamics. The results are interpreted as evidence of the complex magnetic order in Ru-1222. We propose a specific multilayer model to explain the data, and note that superconductivity in the ruthenocuprate is compatible with both the presence and absence of the magnetic dynamics.Comment: 9 pages, 11 figures, Revtex; submitted to Phys.Rev.

    Do we expect light flavor sea-quark asymmetry also for the spin-dependent distribution functions of the nucleon?

    Get PDF
    After taking account of the scale dependence by means of the standard DGLAP evolution equation, the theoretical predictions of the chiral quark soliton model for the unpolarized and longitudinally polarized structure functions of the nucleon are compared with the recent high energy data. The theory is shown to explain all the qualitative features of the experiments, including the NMC data for F2p(x)−F2n(x)F_2^p (x) - F_2^n (x), F2n(x)/F2p(x)F_2^n (x) / F_2^p (x), the Hermes and NuSea data for dˉ(x)−uˉ(x)\bar{d}(x) - \bar{u}(x), the EMC and SMC data for g1p(x)g_1^p(x), g1n(x)g_1^n(x) and g1d(x)g_1^d(x). Among others, flavor asymmetry of the longitudinally polarized sea-quark distributions is a remarkable prediction of this model, i.e., it predicts that Δdˉ(x)−Δuˉ(x)=Cxα[dˉ(x)−uˉ(x)]\Delta \bar{d}(x) - \Delta \bar{u}(x) = C x^{\alpha} [ \bar{d}(x) - \bar{u}(x)] with a sizable negative coefficient C≃−2.0C \simeq -2.0 (and α≃0.12\alpha \simeq 0.12) in qualitative consistency with the recent semi-phenomenological analysis by Morii and Yamanishi.Comment: 14pages, including 5 eps_figures with epsbox.sty, late
    • 

    corecore