1,117 research outputs found
Subpixel Spatial Resolution of the X-Ray Charge-Coupled Device Based on the Charge Cloud Shape
When an X-ray photon lands into a pixel (event pixel), the primary charge is
mainly collected into the event pixel. If the X-ray landing position is
sufficiently close to the pixel boundary, the primary charge spills over to the
adjacent pixel forming split events. We can easily understand that there are
three parameters coupled together; the X-ray landing position inside the pixel,
the X-ray event pattern and the primary charge cloud shape. We can determine
any one of them from the other two parameters. Since we know the charge cloud
shape using the multi-pitch mesh experiment, we can calculate the X-ray landing
position with subpixel resolution using the event pattern. We applied our
method to Ti-K X-rays for the charge-coupled device with m square
pixel. Once the primary charge splits into the adjacent pixel, we can determine
the X-ray landing position with subpixel resolution. Using three- or four-pixel
split events, we can determine the X-ray landing position with an accuracy of
less than m. For a two-pixel split event, we obtained a similar position
accuracy in the split direction with no improvement in the direction
perpendicular to it. We will discuss the type of CCD which can achieve the
subpixel resolution for the entire area of the CCD.Comment: 16pages, 5 figures. To appear in Jpn. J. Appl. Phys. March, 200
Direct measurement of sub-pixel structure of the EPIC MOS CCD on-board th e XMM/NEWTON satellite
We have used a mesh experiment in order to measure the sub-pixel structure of
the EPIC MOS CCDs on-board the XMM/NEWTON satellite. The EPIC MOS CCDs have 40
m-square pixels which have an open electrode structure in order to improve
the detection efficiency for low-energy X-rays. We obtained restored pixel
images for various X-ray event grades (e.g. split-pixel events, single pixel
events, etc.) at various X-ray energies.
We confirmed that the open electrode structure results in a distorted
horizontal pixel boundary. The open electrode region generates both single
pixel events and vertically split events, but no horizontally split events.
Because the single pixel events usually show the best energy resolution, we
discuss a method of increasing the fraction of single pixel events from the
open electrode region. Furthermore, we have directly measured the thickness of
the electrodes and dead-layers by comparing spectra from the open electrode
region with those from the other regions: electrodes, electrode finger and
channel stop. We can say that EPIC MOS CCDs are more radiation hard than
front-illumination chips of ACIS on-board Chandra X-ray Observatory because of
their extra absorption thickness above the charge transfer channel. We
calcurated the mean pixel response and found that our estimation has a good
agreement with that of the ground calibration of EPIC MOS CCD.Comment: 20pages including 2 tables, 10 figures,Accepted for publication in :
Nuclear Instruments and Methods in Physics Research
Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex
Peer reviewedPublisher PD
Discovery of Strong Radiative Recombination Continua from The Supernova Remnant IC 443 with Suzaku
We present the Suzaku spectroscopic study of the Galactic middle-aged
supernova remnant (SNR) IC 443. The X-ray spectrum in the 1.75-6.0 keV band is
described by an optically-thin thermal plasma with the electron temperature of
0.6 keV and several additional Lyman lines. We robustly detect, for the first
time, strong radiative recombination continua (RRC) of H-like Si and S around
at 2.7 and 3.5 keV. The ionization temperatures of Si and S determined from the
intensity ratios of the RRC to He-like K-alpha line are 1.0 keV and 1.2 keV,
respectively. We thus find firm evidence for an extremely-overionized
(recombining) plasma. As the origin of the overionization, a thermal conduction
scenario argued in previous work is not favored in our new results. We propose
that the highly-ionized gas were made at the initial phase of the SNR evolution
in dense regions around a massive progenitor, and the low electron temperature
is due to a rapid cooling by an adiabatic expansion.Comment: 5 pages, 5 figures, accepted by ApJ Lette
Nonthermal X-radiation of SNR RX J1713.7-3946: The Relations to a Nearby Molecular Cloud
The recent X-ray and CO observations of RX J1713.7-3946 show that a
significant fraction of the nonthermal X-ray emission of this unique supernova
remnant associates, in one way or another, with a molecular cloud interacting
with the west part of the shell. This adds a new puzzle in the origin of X-ray
emission which cannot be easily explained within the standard model in
accordance of which X-rays are result of synchrotron radiation of multi-TeV
electrons accelerated by supernova shock waves. We explore an alternative
origin of the X-ray emission assuming that it is produced by secondary
electrons resulting from high energy hadronic interactions in the molecular
gas. Such a scenario could explain in a quite natural way the apparent
correlation between the X-ray and CO morphologies. However, the TeV gamma-ray
emission recently reported by H.E.S.S. significantly constrains the parameter
space of this model. Namely, this mechanism cannot reproduce the bulk of the
observed X-ray flux unless one postulates existence of a PeV cosmic-ray
component penetrating with an unusually hard spectrum into the dense cloud.Comment: 6 pages, 3 figures, to appear in Proc. of Int. Symp. on High Energy
Gamma-ray Astronomy, Heidelberg (July 2004
High-Energy Neutrino Astronomy
Kilometer-scale neutrino detectors such as IceCube are discovery instruments
covering nuclear and particle physics, cosmology and astronomy. Examples of
their multidisciplinary missions include the search for the particle nature of
dark matter and for additional small dimensions of space. In the end, their
conceptual design is very much anchored to the observational fact that Nature
accelerates protons and photons to energies in excess of and
eV, respectively. The cosmic ray connection sets the scale of cosmic
neutrino fluxes. In this context, we discuss the first results of the completed
AMANDA detector and the reach of its extension, IceCube. Similar experiments
are under construction in the Mediterranean. Neutrino astronomy is also
expanding in new directions with efforts to detect air showers, acoustic and
radio signals initiated by super-EeV neutrinos.Comment: 9 pages, Latex2e, uses ws-procs975x65standard.sty (included), 4
postscript figures. To appear in Proceedings of Thinking, Observing, and
Mining the Universe, Sorrento, Italy, September 200
Asymptotics and local constancy of characters of p-adic groups
In this paper we study quantitative aspects of trace characters
of reductive -adic groups when the representation varies. Our approach
is based on the local constancy of characters and we survey some other related
results. We formulate a conjecture on the behavior of relative to
the formal degree of , which we are able to prove in the case where
is a tame supercuspidal. The proof builds on J.-K.~Yu's construction and the
structure of Moy-Prasad subgroups.Comment: Proceedings of Simons symposium on the trace formul
- …