112 research outputs found

    Programmed cell death in trypanosomatids: is it an altruistic mechanism for survival of the fittest?

    Get PDF
    The protozoan parasites Leishmania, Trypanosoma cruzi and Trypanosoma brucei show multiple features consistent with a form of programmed cell death (PCD). Despite some similarities with apoptosis of mammalian cells, PCD in trypanosomatid protozoans appears to be significantly different. In these unicellular organisms, PCD could represent an altruistic mechanism for the selection of cells, from the parasite population, that are fit to be transmitted to the next host. Alternatively, PCD could help in controlling the population of parasites in the host, thereby increasing host survival and favoring parasite transmission, as proposed by Seed and Wenk. Therefore, PCD in trypanosomatid parasites may represent a pathway involved both in survival and propagation of the species

    Characterization of a cDNA clone for a rare mRNA modulated by ovariectomy in mammary carcinomas

    Get PDF
    AbstractA complementary DNA (cDNA) clone (p13) for a rare mRNA was isolated from a cDNA library generated from total polyA+ RNA of 14-day lactating rat mammary gland. In vitro translation of the positively selected mRNA from p13 cDNA revealed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS—PAGE) a polypeptide of 24 kDa. The p13 cDNA clone hybridized on northern blots predominantly to ∼1100 base size RNA and weakly to ∼3800 base size RNA from lactating mammary gland. It hybridized only to ∼3800 base size RNA from rat liver. Southern blot analysis of genomic DNA showed differences in gene organization in mammary gland and liver. The mRNA level for the 24 kDa polypeptide was higher in 7–12 DMBA-induced tumor and lower in the MTW9 carcinoma as compared to lactating mammary gland. After ovariectomy, the mRNA level in mid pregnant gland increased but was reduced in the 7–12 DMBA tumors

    Biomarkers of Safety and Immune Protection for Genetically Modified Live Attenuated Leishmania Vaccines Against Visceral Leishmaniasis – Discovery and Implications

    Get PDF
    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, sub-unit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in L. donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen1-/- in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal individuals

    Leptin Functions in Infectious Diseases

    Get PDF
    Leptin, a pleiotropic protein has long been recognized to play an important role in the regulation of energy homeostasis, metabolism, neuroendocrine function, and other physiological functions through its effects on the central nervous system (CNS) and peripheral tissues. Leptin is secreted by adipose tissue and encoded by the obese (ob) gene. Leptin acts as a central mediator which regulates immunity as well as nutrition. Importantly, leptin can modulate both innate and adaptive immune responses. Leptin deficiency/resistance is associated with dysregulation of cytokine production, increased susceptibility toward infectious diseases, autoimmune disorders, malnutrition and inflammatory responses. Malnutrition induces a state of immunodeficiency and an inclination to death from communicable diseases. Infectious diseases are the disease of poor who invariably suffer from malnutrition that could result from reduced serum leptin levels. Thus, leptin has been placed at the center of many interrelated functions in various pathogenic conditions, such as bacterial, viruses and parasitic infections. We review herein, the recent advances on the role of leptin in malnutrition in pathogenesis of infectious diseases with a particular emphasis on parasitic diseases such as Leishmaniasis, Trypanosomiasis, Amoebiasis, and Malaria

    Identification and Characterization of Genes Involved in Leishmania Pathogenesis: The Potential for Drug Target Selection

    Get PDF
    Identifying and characterizing Leishmania donovani genes and the proteins they encode for their role in pathogenesis can reveal the value of this approach for finding new drug targets. Effective drug targets are likely to be proteins differentially expressed or required in the amastigote life cycle stage found in the patient. Several examples and their potential for chemotherapeutic disruption are presented. A pathway nearly ubiquitous in living cells targeted by anticancer drugs, the ubiquitin system, is examined. New findings in ubiquitin and ubiquitin-like modifiers in Leishmania show how disruption of those pathways could point to additional drug targets. The programmed cell death pathway, now recognized among protozoan parasites, is reviewed for some of its components and evidence that suggests they could be targeted for antiparasitic drug therapy. Finally, the endoplasmic reticulum quality control system is involved in secretion of many virulence factors. How disruptions in this pathway reduce virulence as evidence for potential drug targets is presented

    Immunity to Visceral Leishmaniasis Using Genetically Defined Live-Attenuated Parasites

    Get PDF
    Leishmaniasis is a protozoan parasitic disease endemic to the tropical and subtropical regions of the world, with three major clinical forms, self-healing cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), and visceral leishmaniasis (VL). Drug treatments are expensive and often result in the development of drug resistance. No vaccine is available against leishmaniasis. Subunit Leishmania vaccine immunization in animal models has shown some efficacy but little or none in humans. However, individuals who recover from natural infection are protected from reinfection and develop life-long protection, suggesting that infection may be a prerequisite for immunological memory. Thus, genetically altered live-attenuated parasites with controlled infectivity could achieve such memory. In this paper, we discuss development and characteristics of genetically altered, live-attenuated Leishmania donovani parasites and their possible use as vaccine candidates against VL. In addition, we discuss the challenges and other considerations in the use of live-attenuated parasites

    Lymphocytes influence Leishmania major pathogenesis in a strain-dependent manner

    Get PDF
    Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis and is caused byseveral species of Leishmania parasite. Clinical presentation of CL varies from a self-healinginfection to a chronic form of the disease determined by the virulence of infecting Leishmaniaspecies and host immune responses to the parasite. Mouse models of CL showcontradictory roles of lymphocytes in pathogenesis, while acquired immune responses areresponsible for host protection from diseases. To reconcile the inconclusive roles ofacquired immune responses in pathogenesis, we infected mice from various genetic backgroundswith two pathogenic strains of Leishmania major, Friedlin or 5ASKH, and assessedthe outcome of the infections. Our findings showed that the genetic backgrounds of L. majordetermine the impact of lymphocytes for pathogenesis. In the absence of lymphocytes, L.major Friedlin induced the lowest inflammatory reaction and pathology at the site of infection,while 5ASKH infection induced a strong inflammatory reaction and severe pathology.Lymphocytes ameliorated 5ASKH mediated pathology, while it exacerbated pathology duringFriedlin infection. Excess inflammatory reactions, like the recruitment of macrophages,neutrophils, eosinophils and production of pro-inflammatory cytokines, together with uncontrolledparasite growth in the absence of lymphocytes during 5ASKH infection may inducesevere pathology development. Taken together our study provides insight into the impact ofdifferences in the genetic background of Leishmania on CL pathogenesis

    Induction of immunogenicity by live attenuated Leishmania donovani centrin deleted parasites in dogs

    Get PDF
    AbstractZoonotic visceral leishmaniasis, caused by the intracellular protozoan parasite Leishmania infantum, is a neglected tropical disease that is often fatal when untreated. Dogs are considered the main reservoir of L. infantum in zoonotic VL as the presence of infected dogs may increase the risk for human infection. Canine visceral leishmaniasis (CVL) is a major veterinary and public health problem in Southern Europe, Middle East and South America. Control of animal reservoirs relies on elimination of seropositive dogs in endemic areas. However, treatment of infected dogs is not considered a favorable approach as this can lead to emergence of drug resistance since the same drugs are used to treat human infections. Therefore, vaccination against CVL remains the best alternative in control of the animal reservoirs. In this study, we present data on the immunogenicity profile of a live attenuated parasite LdCen−/− in a canine infection model and compared it to that of Leishmune®, a commercially available recombinant vaccine. The immunogenicity of the LdCen−/− parasites was evaluated by antibody secretion, production of intracytoplasmic and secreted cytokines, activation and proliferation of T cells. Vaccination with LdCen−/− resulted in high immunogenicity as revealed by the higher IgGTotal, IgG1, and IgG2 production and higher lymphoproliferative response. Further, LdCen−/− vaccinated dogs showed higher frequencies of activated CD4+ and CD8+ T cells, IFN-γ production by CD8+ T cells, increased secretion of TNF-α and IL-12/IL-23p40 and decreased secretion of IL-4. These results contribute to the understanding of immunogenicity elicited by live attenuated L. donovani parasites and, consequently, to the development of effective vaccines against visceral leishmaniasis
    corecore