239 research outputs found

    Disparities in Use of Human Epidermal Growth Hormone Receptor 2–Targeted Therapy for Early-Stage Breast Cancer

    Get PDF
    Trastuzumab is a key component of adjuvant therapy for stage I to III human epidermal growth factor receptor 2 (HER2)–positive breast cancer. The rates and patterns of trastuzumab use have never been described in a population-based sample. The recent addition of HER2 information to the SEER-Medicare database offers an opportunity to examine patterns of trastuzumab use and to evaluate possible disparities in receipt of trastuzumab

    Effects of gaseous NH3 and SO2 on the concentration profiles of PCDD/F in flyash under post-combustion zone conditions

    Get PDF
    The influence of gaseous ammonia and sulphur dioxide on the formation of 2378-substituted PCDD/F on a reference flyash from a municipal waste incinerator has been investigated using a laboratory scale fixed-bed reactor. The reference flyash samples (BCR-490) was reacted under a simulated flue gas stream at temperatures of 225 and 375 °C for 96 h. The experiments were carried out in two series: first with simulated flue gas alone, and then with injection of NH3 or SO2 gas into the flue gas just before the reactor inlet. It was found that the injection of gaseous ammonia into the flue gas could decrease the concentration of both PCDD and PCDF by 34–75% from the solid phase and by 21–40% from the gas phase. Converting the results to I-TEQ values, it could reduce the total I-TEQ values of PCDD and PCDF in the sum of the flyash and exhaust flue gas by 42–75% and 24–57% respectively. The application of SO2 led to 99% and 93% reductions in the PCDD and PCDF average congener concentrations, respectively in the solid phase. In the gas phase, the total reductions were 89% and 76% for PCDD and PCDF, respectively. Moreover, addition of SO2 reduced the total I-TEQ value of PCDD and PCDF in the flyash and exhaust flue gas together by 60–86% and 72–82% respectively. Sulphur dioxide was more effective than ammonia in suppressing PCDD/F formation in flyash under the conditions investigated

    Performance evaluation of deep feature learning for RGB-D image/video classification

    Get PDF
    Deep Neural Networks for image/video classification have obtained much success in various computer vision applications. Existing deep learning algorithms are widely used on RGB images or video data. Meanwhile, with the development of low-cost RGB-D sensors (such as Microsoft Kinect and Xtion Pro-Live), high-quality RGB-D data can be easily acquired and used to enhance computer vision algorithms [14]. It would be interesting to investigate how deep learning can be employed for extracting and fusing features from RGB-D data. In this paper, after briefly reviewing the basic concepts of RGB-D information and four prevalent deep learning models (i.e., Deep Belief Networks (DBNs), Stacked Denoising Auto-Encoders (SDAE), Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) Neural Networks), we conduct extensive experiments on five popular RGB-D datasets including three image datasets and two video datasets. We then present a detailed analysis about the comparison between the learned feature representations from the four deep learning models. In addition, a few suggestions on how to adjust hyper-parameters for learning deep neural networks are made in this paper. According to the extensive experimental results, we believe that this evaluation will provide insights and a deeper understanding of different deep learning algorithms for RGB-D feature extraction and fusion

    Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano

    Get PDF
    International audienceCaldera-forming volcanic eruptions are low-frequency, highimpact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales1. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained2,3. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the 'Minoan' caldera-formingeruption of Santorini volcano,Greece4, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption5,6. Despite the large volume of erupted magma4 (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicicmagmabatches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems

    Planning and implementing sustainability in higher education institutions: an overview of the difficulties and potentials

    Get PDF
    Planning in sustainable development is believed to be an important element in allowing higher education institutions to set their goals and to commit themselves towards undertaking concrete actions and measures at all levels in order to implement sustainability. Yet, there is a paucity of research that has looked at the extent to which planning can support institutions of higher education to assess their performances and to determine whether the set aims have been met. This research gap needs to be met to allow a better understanding of how planning can help to promote the integration of the three components of sustainable development–economic development, social development and environmental protection in higher education. This paper explores the challenges for planning the sustainable development in higher education, also outlining the potentials lessons learned that could assist in improving Education for Sustainable Development efforts in Higher Education Institutions. Among its main results are the fact that many universities wish to pursue sustainable development, but their efforts are hindered by lack of institutional support and planning and limited emphasis on approaches, such as problem-based learning. The universities that are engaged in the field have to face many problems, varying from limited resources to lack of trained staff. As a result, integrated approaches to sustainability become difficult to implement. Finally, the paper has identified the fact that many opportunities offered mainstream developments, such as the UN Declaration ‘The World we Want’ or the UN Sustainable Development Goals are not being put to full use

    An Incomplete TCA Cycle Increases Survival of Salmonella Typhimurium during Infection of Resting and Activated Murine Macrophages

    Get PDF
    In comparison to the comprehensive analyses performed on virulence gene expression, regulation and action, the intracellular metabolism of Salmonella during infection is a relatively under-studied area. We investigated the role of the tricarboxylic acid (TCA) cycle in the intracellular replication of Salmonella Typhimurium in resting and activated macrophages, epithelial cells, and during infection of mice.We constructed deletion mutations of 5 TCA cycle genes in S. Typhimurium including gltA, mdh, sdhCDAB, sucAB, and sucCD. We found that the mutants exhibited increased net intracellular replication in resting and activated murine macrophages compared to the wild-type. In contrast, an epithelial cell infection model showed that the S. Typhimurium ΔsucCD and ΔgltA strains had reduced net intracellular replication compared to the wild-type. The glyoxylate shunt was not responsible for the net increased replication of the TCA cycle mutants within resting macrophages. We also confirmed that, in a murine infection model, the S. Typhimurium ΔsucAB and ΔsucCD strains are attenuated for virulence.Our results suggest that disruption of the TCA cycle increases the ability of S. Typhimurium to survive within resting and activated murine macrophages. In contrast, epithelial cells are non-phagocytic cells and unlike macrophages cannot mount an oxidative and nitrosative defence response against pathogens; our results show that in HeLa cells the S. Typhimurium TCA cycle mutant strains show reduced or no change in intracellular levels compared to the wild-type. The attenuation of the S. Typhimurium ΔsucAB and ΔsucCD mutants in mice, compared to their increased net intracellular replication in resting and activated macrophages suggest that Salmonella may encounter environments within the host where a complete TCA cycle is advantageous

    RNase L Mediated Protection from Virus Induced Demyelination

    Get PDF
    IFN-α/β plays a critical role in limiting viral spread, restricting viral tropism and protecting mice from neurotropic coronavirus infection. However, the IFN-α/β dependent mechanisms underlying innate anti-viral functions within the CNS are poorly understood. The role of RNase L in viral encephalomyelitis was explored based on its functions in inhibiting translation, inducing apoptosis, and propagating the IFN-α/β pathway through RNA degradation intermediates. Infection of RNase L deficient (RL−/−) mice with a sub-lethal, demyelinating mouse hepatitis virus variant revealed that the majority of mice succumbed to infection by day 12 p.i. However, RNase L deficiency did not affect overall control of infectious virus, or diminish IFN-α/β expression in the CNS. Furthermore, increased morbidity and mortality could not be attributed to altered proinflammatory signals or composition of cells infiltrating the CNS. The unique phenotype of infected RL−/− mice was rather manifested in earlier onset and increased severity of demyelination and axonal damage in brain stem and spinal cord without evidence for enhanced neuronal infection. Increased tissue damage coincided with sustained brain stem infection, foci of microglia infection in grey matter, and increased apoptotic cells. These data demonstrate a novel protective role for RNase L in viral induced CNS encephalomyelitis, which is not reflected in overall viral control or propagation of IFN-α/β mediated signals. Protective function is rather associated with cell type specific and regional restriction of viral replication in grey matter and ameliorated neurodegeneration and demyelination
    corecore