20 research outputs found

    miRIAD-integrating microRNA inter- and intragenic data

    Get PDF
    MicroRNAs (miRNAs) are a class of small (similar to 22 nucleotides) non-coding RNAs that post-transcriptionally regulate gene expression by interacting with target mRNAs. A majority of miRNAs is located within intronic or exonic regions of protein-coding genes (host genes), and increasing evidence suggests a functional relationship between these miRNAs and their host genes. Here, we introduce miRIAD, a web-service to facilitate the analysis of genomic and structural features of intragenic miRNAs and their host genes for five species (human, rhesus monkey, mouse, chicken and opossum). miRIAD contains the genomic classification of all miRNAs (inter-and intragenic), as well as classification of all protein-coding genes into host or non-host genes (depending on whether they contain an intragenic miRNA or not). We collected and processed public data from several sources to provide a clear visualization of relevant knowledge related to intragenic miRNAs, such as host gene function, genomic context, names of and references to intragenic miRNAs, miRNA binding sites, clusters of intragenic miRNAs, miRNA and host gene expression across different tissues and expression correlation for intragenic miRNAs and their host genes. Protein-protein interaction data are also presented for functional network analysis of host genes. In summary, miRIAD was designed to help the research community to explore, in a user-friendly environment, intragenic miRNAs, their host genes and functional annotations with minimal effort, facilitating hypothesis generation and in-silico validations

    miRIAD-integrating microRNA inter- and intragenic data

    Get PDF
    MicroRNAs (miRNAs) are a class of small (similar to 22 nucleotides) non-coding RNAs that post-transcriptionally regulate gene expression by interacting with target mRNAs. A majority of miRNAs is located within intronic or exonic regions of protein-coding genes (host genes), and increasing evidence suggests a functional relationship between these miRNAs and their host genes. Here, we introduce miRIAD, a web-service to facilitate the analysis of genomic and structural features of intragenic miRNAs and their host genes for five species (human, rhesus monkey, mouse, chicken and opossum). miRIAD contains the genomic classification of all miRNAs (inter-and intragenic), as well as classification of all protein-coding genes into host or non-host genes (depending on whether they contain an intragenic miRNA or not). We collected and processed public data from several sources to provide a clear visualization of relevant knowledge related to intragenic miRNAs, such as host gene function, genomic context, names of and references to intragenic miRNAs, miRNA binding sites, clusters of intragenic miRNAs, miRNA and host gene expression across different tissues and expression correlation for intragenic miRNAs and their host genes. Protein-protein interaction data are also presented for functional network analysis of host genes. In summary, miRIAD was designed to help the research community to explore, in a user-friendly environment, intragenic miRNAs, their host genes and functional annotations with minimal effort, facilitating hypothesis generation and in-silico validations

    Repurposing existing medications for coronavirus disease 2019: protocol for a rapid and living systematic review

    Get PDF
    BACKGROUND Coronavirus disease 2019 (COVID-19) has no confirmed specific treatments. However, there might be in vitro and early clinical data as well as evidence from severe acute respiratory syndrome and Middle Eastern respiratory syndrome that could inform clinicians and researchers. This systematic review aims to create priorities for future research of drugs repurposed for COVID-19. METHODS This systematic review will include in vitro, animal, and clinical studies evaluating the efficacy of a list of 34 specific compounds and 4 groups of drugs identified in a previous scoping review. Studies will be identified both from traditional literature databases and pre-print servers. Outcomes assessed will include time to clinical improvement, time to viral clearance, mortality, length of hospital stay, and proportions transferred to the intensive care unit and intubated, respectively. We will use the GRADE methodology to assess the quality of the evidence. DISCUSSION The challenge posed by COVID-19 requires not just a rapid review of drugs that can be repurposed but also a sustained effort to integrate new evidence into a living systematic review. TRIAL REGISTRATION PROSPERO 2020 CRD42020175648

    In Situ Transplantation of Alginate Bioencapsulated Adipose Tissues Derived Stem Cells (ADSCs) via Hepatic Injection in a Mouse Model.

    No full text
    Adipose tissue derived stem cells (ADSCs) transplantation has recently gained widespread enthusiasm, particularly in the perspective to use them as potential alternative cell sources for hepatocytes in cell based therapy, mainly because of their capability of hepatogenic differentiation in vitro and in vivo. But some challenges remain to be addressed, including whether ADSCs can be provided effectively to the target organ and whether subsequent proliferation of transplanted cells can be achieved. To date, intrasplenic injection is the conventional method to deliver ADSCs into the liver; however, a number of donor cells retained in the spleen has been reported. In this study, our objective is to evaluate a novel route to transplant ADSCs specifically to the liver. We aimed to test the feasibility of in situ transplantation of ADSCs by injecting bioencapsulated ADSCs into the liver in mouse model.The ADSCs isolated from human alpha 1 antitrypsin (M-hAAT) transgenic mice were used to allow delivered ADSCs be readily identified in the liver of recipient mice, and alginate was selected as a cell carrier. We first evaluated whether alginate microspheres are implantable into the liver tissue by injection and whether ADSCs could migrate from alginate microspheres (study one). Once proven, we then examined the in vivo fate of ADSCs loaded microspheres in the liver. Specifically, we evaluated whether transplanted, undifferentiated ASDCs could be induced by the local microenvironment toward hepatogenic differentiation and the distribution of surviving ADSCs in major tissue organs (study two).Our results indicated ADSCs loaded alginate microspheres were implantable into the liver. Both degraded and residual alginate microspheres were observed in the liver up to three weeks. The viable ADSCs were detectable surrounding degraded and residual alginate microspheres in the liver and other major organs such as bone marrow and the lungs. Importantly, transplanted ADSCs underwent hepatogenic differentiation to become cells expressing albumin in the liver. These findings improve our understanding of the interplay between ADSCs (donor cells), alginate (biomaterial), and local microenvironment in a hepatectomized mouse model, and might improve the strategy of in situ transplantation of ADSCs in treating liver diseases

    Daptomycin as supportive treatment option in patients developing mediastinitis after open cardiac surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mediastinitis is a severe complication after cardiac surgery. While improvement of prophylaxis and of medical and surgical therapy has reduced its incidence, the treatment of mediastinitis continues to be a challenging problem. Within this study, we report the successful use of daptomycin as supportive therapy in patients developing mediastinitis after open cardiac surgery.</p> <p>Methods</p> <p>The records of 21 consecutive patients who developed mediastinitis after cardiac surgery were retrospectively reviewed. After diagnosis, all patients received surgical debridement and antibiotic therapy with daptomycin. All patients were followed up to death or discharge.</p> <p>Results</p> <p>Clinical improvement after combined surgical and antibiotic therapy with daptomycin was found in 90.5% of the patients. The median time until clinical improvement occurred was 5 [4/6] days. Daptomycin was well-tolerated and no major adverse events during therapy were observed observed.</p> <p>Conclusions</p> <p>This study provides new and helpful information regarding the beneficial use of daptomycin as supportive treatment option in patients developing mediastinitis after cardiac surgery.</p

    Repurposing Existing Medications for Coronavirus Disease 2019: Protocol for a Rapid and Living Systematic Review

    No full text
    Background: Coronavirus Disease 2019 (COVID-19) has no known specific treatments. However, there might be in vitro and early clinical data as well as evidence from Severe Acute Respiratory Syndrome and Middle Eastern Respiratory Syndrome that could inform clinicians and researchers. This systematic review aims to create priorities for future research of drugs repurposed for COVID-19. Methods: This systematic review will include in vitro, animal, and clinical studies evaluating the efficacy of a list of 34 specific compounds and four groups of drugs identified in a previous scoping review. Studies will be identified both from traditional literature databases and pre-print servers. Outcomes assessed will include time to clinical improvement, time to viral clearance, mortality, length of hospital stay, and proportions transferred to the intensive care unit and intubated, respectively. We will use the GRADE methodology to assess the quality of the evidence. Discussion: The challenge posed by COVID-19 requires not just a rapid review of drugs that can be repurposed but also a sustained effort to integrate new evidence into a living systematic review

    Characterization of adipose tissue derived stem cells (ADSCs) isolated from M-hAAT transgenic mice.

    No full text
    <p>(A) Representative pictures of FACS analysis showing isolated mouse ADSC expressed mesenchymal stem cell markers CD90 and CD105, but not hematopoietic lineage markers, such as CD45, or endothelial cell markers, such as CD31; (B) Detection of human AAT protein in cell culture medium by ELISA; (C) Detection of mouse albumin in cell culture medium by ELISA. Mouse albumin was used as a positive control (PC) and cell culture medium from RAW264.7 was used as a negative control.</p
    corecore