1,106 research outputs found

    Manifestations of a spatial variation of fundamental constants on atomic clocks, Oklo, meteorites, and cosmological phenomena

    Full text link
    The remarkable detection of a spatial variation in the fine-structure constant, alpha, from quasar absorption systems must be independently confirmed by complementary searches. In this letter, we discuss how terrestrial measurements of time-variation of the fundamental constants in the laboratory, meteorite data, and analysis of the Oklo nuclear reactor can be used to corroborate the spatial variation seen by astronomers. Furthermore, we show that spatial variation of the fundamental constants may be observable as spatial anisotropy in the cosmic microwave background, the accelerated expansion (dark energy), and large-scale structure of the Universe.Comment: 4 page

    Faraday Rotation as a diagnostic of Galactic foreground contamination of CMB maps

    Full text link
    The contribution from the residuals of the foreground can have a significant impact on the temperature maps of the Cosmic Microwave Background (CMB). Mostly, the focus has been on the galactic plane, when foreground cleaning has taken place. However, in this paper, we will investigate the possible foreground contamination, from sources outside the galactic plane in the CMB maps. We will analyze the correlation between the Faraday rotation map and the CMB temperature map. The Faraday rotation map is dependent on the galactic magnetic field, as well as the thermal electron density, and both may contribute to the CMB temperature. We find that the standard deviation for the mean cross correlation deviate from that of simulations at the 99.9% level. Additionally, a comparison between the CMB temperature extrema and the extremum points of the Faraday rotation is also performed, showing a general overlap between the two. Also we find that the CMB Cold Spot is located at an area of strong negative cross correlation, meaning that it may be explained by a galactic origin. Further, we investigate nearby supernova remnants in the galaxy, traced by the galactic radio loops. These super nova remnants are located at high and low galactic latitude, and thus well outside the galactic plane. We find some correlation between the Faraday Rotation and the CMB temperature, at select radio loops. This indicate, that the galactic foregrounds may affect the CMB, at high galactic latitudesComment: 13 pages, 22 figures, 6 table

    Estimating small angular scale CMB anisotropy with high resolution N-body simulations: weak lensing

    Full text link
    We estimate the impact of weak lensing by strongly nonlinear cosmological structures on the cosmic microwave background. Accurate calculation of large \ell multipoles requires N-body simulations and ray-tracing schemes with both high spatial and temporal resolution. To this end we have developed a new code that combines a gravitational Adaptive Particle-Particle, Particle-Mesh (AP3M) solver with a weak lensing evaluation routine. The lensing deviations are evaluated while structure evolves during the simulation so that all evolution steps--rather than just a few outputs--are used in the lensing computations. The new code also includes a ray-tracing procedure that avoids periodicity effects in a universe that is modeled as a 3-D torus in the standard way. Results from our new simulations are compared with previous ones based on Particle-Mesh simulations. We also systematically investigate the impact of box volume, resolution, and ray-tracing directions on the variance of the computed power spectra. We find that a box size of 512h1512 h^{-1} Mpc is sufficient to provide a robust estimate of the weak lensing angular power spectrum in the \ell-interval (2,000--7,000). For a reaslistic cosmological model the power [(+1)C/2π]1/2[\ell(\ell+1)C_{\ell}/2\pi]^{1/2} takes on values of a few μK\mu K in this interval, which suggests that a future detection is feasible and may explain the excess power at high \ell in the BIMA and CBI observations.Comment: 49 pages, 13 figures, accepted for publication in Ap

    Theory of Cylindrical Tubules and Helical Ribbons of Chiral Lipid Membranes

    Full text link
    We present a general theory for the equilibrium structure of cylindrical tubules and helical ribbons of chiral lipid membranes. This theory is based on a continuum elastic free energy that permits variations in the direction of molecular tilt and in the curvature of the membrane. The theory shows that the formation of tubules and helical ribbons is driven by the chirality of the membrane. Tubules have a first-order transition from a uniform state to a helically modulated state, with periodic stripes in the tilt direction and ripples in the curvature. Helical ribbons can be stable structures, or they can be unstable intermediate states in the formation of tubules.Comment: 43 pages, including 12 postscript figures, uses REVTeX 3.0 and epsf.st

    Phantom Accretion onto the Schwarzschild de-Sitter Black Hole

    Full text link
    We deal with phantom energy accretion onto the Schwarzschild de-Sitter black hole. The energy flux conservation, relativistic Bernoulli equation and mass flux conservation equation are formulated to discuss the phantom accretion. We discuss the conditions for critical accretion. It is found that mass of the black hole decreases due to phantom accretion. There exist two critical points which lie in the exterior of horizons (black hole and cosmological horizons). The results for the phantom energy accretion onto the Schwarzschild black hole can be recovered by taking Λ0\Lambda\rightarrow0.Comment: 9 pages, no figur

    Structures and orientational transitions in thin films of tilted hexatic smectics

    Full text link
    We present detailed systematic studies of structural transformations in thin liquid crystal films with the smectic-C to hexatic phase transition. For the first time all possible structures reported in the literature are observed for one material (5 O.6) at the variation of temperature and thickness. In unusual modulated structures the equilibrium period of stripes is twice with respect to the domain size. We interpret these patterns in the frame work of phenomenological Landau type theory, as equilibrium phenomena produced by a natural geometric frustration in a system having spontaneous splay distortion.Comment: 7 pages, 6 figure

    On the Rees-Sciama effect: maps and statistics

    Get PDF
    Small maps of the Rees-Sciama (RS) effect are simulated by using an appropriate N-body code and a certain ray-tracing procedure. A method designed for the statistical analysis of cosmic microwave background (CMB) maps is applied to study the resulting simulations. These techniques, recently proposed --by our team-- to consider lens deformations of the CMB, are adapted to deal with the RS effect. This effect and the deviations from Gaussianity associated to it seem to be too small to be detected in the near future. This conclusion follows from our estimation of both the RS angular power spectrum and the RS reduced n-direction correlation functions for n<7.Comment: 11 pages, 13 figures, to appear in MNRA

    Instability of reconstruction of the low CMB multipoles

    Full text link
    We discuss the problem of the bias of the Internal Linear Combination (ILC) CMB map and show that it is closely related to the coefficient of cross-correlation K(l) of the true CMB and the foreground for each multipole l. We present analysis of the cross-correlation for the WMAP ILC quadrupole and octupole from the first (ILC(I)) and the third (ILC(III)) year data releases and show that these correlations are about -0.52-0.6. Analysing 10^4 Monte Carlo simulations of the random Gaussian CMB signals, we show that the distribution function for the corresponding coefficient of the cross-correlation has a polynomial shape P(K,l)\propto(1-K^2)^(l-1). We show that the most probable value of the cross-correlation coefficient of the ILC and foreground quadrupole has two extrema at K ~= +/-0.58$. Thus, the ILC(III) quadrupole represents the most probable value of the coefficient K. We analyze the problem of debiasing of the ILC CMB and pointed out that reconstruction of the bias seems to be very problematic due to statistical uncertainties. In addition, instability of the debiasing illuminates itself for the quadrupole and octupole components through the flip-effect, when the even (l+m) modes can be reconstructed with significant error. This error manifests itself as opposite, in respect to the true sign of even low multipole modes, and leads to significant changes of the coefficient of cross-correlation with the foreground. We show that the CMB realizations, whose the sign of quadrupole (2,0) component is negative (and the same, as for all the foregrounds), the corresponding probability to get the positive sign after implementation of the ILC method is about 40%.Comment: 11 pages, 5 figure

    A window to quantum gravity phenomena in the emergence of the seeds of cosmic structure

    Full text link
    Inflationary cosmology has, in the last few years,received a strong dose of support from observations. The fact that the fluctuation spectrum can be extracted from the inflationary scenario through an analysis that involves quantum field theory in curved space-time, and that it coincides with the observational data has lead to a certain complacency in the community, which prevents the critical analysis of the obscure spots in the derivation. We argue here briefly, as we have discussed in more detail elsewhere, that there is something important missing in our understanding of the origin of the seeds of Cosmic Structure, as is evidenced by the fact that in the standard accounts the inhomogeneity and anisotropy of our universe seems to emerge from an exactly homogeneous andisotropic initial state through processes that do not break those symmetries. This article gives a very brief recount of the problems faced by the arguments based on established physics. The conclusion is that we need some new physics to be able to fully address the problem. The article then exposes one avenue that has been used to address the central issue and elaborates on the degree to which, the new approach makes different predictions from the standard analyses. The approach is inspired on Penrose's proposals that Quantum Gravity might lead to a real, dynamical collapse of the wave function, a process that we argued has the properties needed to extract us from the theoretical impasse described above.Comment: 13 pages, 3 figures. To appear in DICE 2008 conference proceeding
    corecore