1,589 research outputs found

    Equal-time correlation function for directed percolation

    Full text link
    We suggest an equal-time n-point correlation function for systems in the directed percolation universality class which is well defined in all phases and independent of initial conditions. It is defined as the probability that all points are connected with a common ancestor in the past by directed paths.Comment: LaTeX, 12 pages, 8 eps figure

    Boundary-induced nonequilibrium phase transition into an absorbing state

    Full text link
    We demonstrate that absorbing phase transitions in one dimension may be induced by the dynamics of a single site. As an example we consider a one-dimensional model of diffusing particles, where a single site at the boundary evolves according to the dynamics of a contact process. As the rate for offspring production at this site is varied, the model exhibits a phase transition from a fluctuating active phase into an absorbing state. The universal properties of the transition are analyzed by numerical simulations and approximation techniques.Comment: 4 pages, 4 figures; minor change

    Numerical Study of Local and Global Persistence in Directed Percolation

    Full text link
    The local persistence probability P_l(t) that a site never becomes active up to time t, and the global persistence probability P_g(t) that the deviation of the global density from its mean value rho(t)- does not change its sign up to time t are studied in a one-dimensional directed percolation process by Monte Carlo simulations. At criticality, starting from random initial conditions, both P_l(t) and P_g(t) decay algebraically with exponents theta_l ~ theta_g ~ 1.50(2), which is in contrast to previously known cases where theta_g < theta_l. The exponents are found to be independent of the initial density and the microscopic details of the dynamics, suggesting that theta_l and theta_g are universal exponents. It is shown that in the special case of directed-bond percolation, P_l(t) can be related to a certain return probability of a directed percolation process with an active source (wet wall).Comment: revtex, 7 pages, including 6 eps figure

    Generalized scaling relations for unidirectionally coupled nonequilibrium systems

    Full text link
    Unidirectionally coupled systems which exhibit phase transitions into an absorbing state are investigated at the multicritical point. We find that for initial conditions with isolated particles, each hierarchy level exhibits an inhomogeneous active region, coupled and uncoupled respectively. The particle number of each level increases algebraically in time as N(t)tηN(t) \sim t^{\eta} with different exponents η\eta in each domain. This inhomogeneity is a quite general feature of unidirectionally coupled systems and leads to two hyperscaling relations between dynamic and static critical exponents. Using the contact process and the branching-annihilating random walk with two offsprings, which belong to the DP and PC classes respectively, we numerically confirm the scaling relations.Comment: 4 pages, 3 figures, 1 tabl

    Binary spreading process with parity conservation

    Full text link
    Recently there has been a debate concerning the universal properties of the phase transition in the pair contact process with diffusion (PCPD) 2A3A,2A2A\to 3A, 2A\to \emptyset. Although some of the critical exponents seem to coincide with those of the so-called parity-conserving universality class, it was suggested that the PCPD might represent an independent class of phase transitions. This point of view is motivated by the argument that the PCPD does not conserve parity of the particle number. In the present work we pose the question what happens if the parity conservation law is restored. To this end we consider the the reaction-diffusion process 2A4A,2A2A\to 4A, 2A\to \emptyset. Surprisingly this process displays the same type of critical behavior, leading to the conclusion that the most important characteristics of the PCPD is the use of binary reactions for spreading, regardless of whether parity is conserved or not.Comment: RevTex, 4pages, 4 eps figure

    Effect of Vinyl and Silicon Monomers on Mechanical and Degradation Properties of Bio-Degradable Jute-Biopol® Composite

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Composites of jute fabrics (Hessian cloth) and Biopol® were prepared by compression molding process. Three types of Biopol® (3-hydroxbutyrate-co-3-hydroxyvalarate) such as D300G, D400G and D600G, depending on the concentration of 3-hydroxyvalarate (3HV) in 3-hydroxbutyrate (3HB) were taken for this purpose. Mechanical properties such as tensile strength (TS), bending strength (BS), elongation at break (Eb) and impact strength (IS) of the jute-Biopol® composites were studied. It was found that the composite with D400G produced higher mechanical properties in comparison to the other two types of Biopol®. To increase mechanical properties as well as interfacial adhesion between fiber and matrix, 2-ethyl hydroxy acrylate (EHA), vinyl tri-methoxy silane (VMS) and 3-methacryloxypropyl tri-methoxy silane (MPS) were taken as coupling agents. Enhanced mechanical properties of the composites were obtained by using these coupling agents. Biopol® D400G composites showed the highest mechanical properties. Among the coupling agents EHA depicts the highest increase of mechanical properties such as tensile strength (80%), bending strength (81%), elongation at break (33%) and impact strength (130%) compared pure Biopol. SEM investigations demonstrate that the coupling agents improve the interfacial adhesion between fiber and matrix. The surface of the silanized jute was characterized by FTIR and found the deposition of silane on jute fiber was observed. Soil degradation test proved that the composite prepared with EHA treated jute exhibits better degradation properties in comparison to pure Biopol®

    Epidemic spreading with immunization and mutations

    Full text link
    The spreading of infectious diseases with and without immunization of individuals can be modeled by stochastic processes that exhibit a transition between an active phase of epidemic spreading and an absorbing phase, where the disease dies out. In nature, however, the transmitted pathogen may also mutate, weakening the effect of immunization. In order to study the influence of mutations, we introduce a model that mimics epidemic spreading with immunization and mutations. The model exhibits a line of continuous phase transitions and includes the general epidemic process (GEP) and directed percolation (DP) as special cases. Restricting to perfect immunization in two spatial dimensions we analyze the phase diagram and study the scaling behavior along the phase transition line as well as in the vicinity of the GEP point. We show that mutations lead generically to a crossover from the GEP to DP. Using standard scaling arguments we also predict the form of the phase transition line close to the GEP point. It turns out that the protection gained by immunization is vitally decreased by the occurrence of mutations.Comment: 9 pages, 13 figure

    Influence of diffusion on models for non-equilibrium wetting

    Full text link
    It is shown that the critical properties of a recently studied model for non-equilibrium wetting are robust if one extends the dynamic rules by single-particle diffusion on terraces of the wetting layer. Examining the behavior at the critical point and along the phase transition line, we identify a special point in the phase diagram where detailed balance of the dynamical processes is partially broken.Comment: 6 pages, 9 figure

    Matrix Product Eigenstates for One-Dimensional Stochastic Models and Quantum Spin Chains

    Full text link
    We show that all zero energy eigenstates of an arbitrary mm--state quantum spin chain Hamiltonian with nearest neighbor interaction in the bulk and single site boundary terms, which can also describe the dynamics of stochastic models, can be written as matrix product states. This means that the weights in these states can be expressed as expectation values in a Fock representation of an algebra generated by 2m2m operators fulfilling m2m^2 quadratic relations which are defined by the Hamiltonian.Comment: 11 pages, Late
    corecore