32 research outputs found

    Carbon dioxide fluxes from contrasting ecosystems in the Sudanian Savanna in West Africa

    Get PDF
    Background: The terrestrial land surface in West Africa is made up of several types of savanna ecosystems differing in land use changes which modulate gas exchanges between their vegetation and the overlying atmosphere. This study compares diurnal and seasonal estimates of CO2 fluxes from three contrasting ecosystems, a grassland, a mixture of fallow and cropland, and nature reserve in the Sudanian Savanna and relate them to water availability and land use characteristics. Results: Over the study period, and for the three study sites, low soil moisture availability, high vapour pressure deficit and low ecosystem respiration were prevalent during the dry season (November to March), but the contrary occurred during the rainy season (May to October). Carbon uptake predominantly took place in the rainy season, while net carbon efflux occurred in the dry season as well as the dry to wet and wet to dry transition periods (AM and ND) respectively. Carbon uptake decreased in the order of the nature reserve, a mixture of fallow and cropland, and grassland. Only the nature reserve ecosystem at the Nazinga Park served as a net sink of CO2, mostly by virtue of a several times larger carbon uptake and ecosystem water use efficiency during the rainy season than at the other sites. These differences were influenced by albedo, LAI, EWUE, PPFD and climatology during the period of study. Conclusion: These results suggest that land use characteristics affect plant physiological processes that lead to flux exchanges over the Sudanian Savanna ecosystems. It affects the diurnal, seasonal and annual changes in NEE and its composite signals, GPP and RE. GPP and NEE were generally related as NEE scaled with photosynthesis with higher CO2 assimilation leading to higher GPP. However, CO2 effluxes over the study period suggest that besides biomass regrowth, other processes, most likely from the soil might have also contributed to the enhancement of ecosystem respiration. © 2015 Quansah et al

    (Photo)physical properties of new molecular glasses end-capped with thiophene rings composed of diimide and imine units

    Get PDF
    New symmetrical arylene bisimide derivatives formed by using electron-donating-electron-accepting systems were synthesized. They consist of a phthalic diimide or naphthalenediimide core and imine linkages and are end-capped with thiophene, bithiophene, and (ethylenedioxy)thiophene units. Moreover, polymers were obtained from a new diamine, N,N′-bis(5- aminonaphthalenyl)naphthalene-1,4,5,8-dicarboximide and 2,5- thiophenedicarboxaldehyde or 2,2′-bithiophene-5,5′-dicarboxaldehyde. The prepared azomethine diimides exhibited glass-forming properties. The obtained compounds emitted blue light with the emission maximum at 470 nm. The value of the absorption coefficient was determined as a function of the photon energy using spectroscopic ellipsometry. All compounds are electrochemically active and undergo reversible electrochemical reduction and irreversible oxidation processes as was found in cyclic voltammetry and differential pulse voltammetry (DPV) studies. They exhibited a low electrochemically (DPV) calculated energy band gap (Eg) from 1.14 to 1.70 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels and Eg were additionally calculated theoretically by density functional theory at the B3LYP/6-31G(d,p) level. The photovoltaic properties of two model compounds as the active layer in organic solar cells in the configuration indium tin oxide/poly(3,4-(ethylenedioxy)thiophene):poly(styrenesulfonate)/active layer/Al under an illumination of 1.3 mW/cm2 were studied. The device comprising poly(3-hexylthiophene) with the compound end-capped with bithiophene rings showed the highest value of Voc (above 1 V). The conversion efficiency of the fabricated solar cell was in the range of 0.69-0.90%

    The WASCAL hydrometeorological observatory in the Sudan Savanna of Burkina Faso and Ghana

    Get PDF
    Watersheds with rich hydrometeorological equipment are still very limited in West Africa but are essential for an improved analysis of environmental changes and their impacts in this region. This study gives an overview of a novel hydrometeorological observatory that was established for two mesoscale watersheds in the Sudan Savanna of Southern Burkina Faso and Northern Ghana as part of the West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL) program. The study area is characterized by severe land cover changes due to a strongly increasing demand of agricultural land. The observatory is designed for long-term measurements of >30 hydrometeorological variables in subhourly resolution and further variables such as CO2. This information is complemented by long-term daily measurements from national meteorological and hydrological networks, among several other datasets recently established for this region. A unique component of the observatory is a micrometeorological field experiment using eddy covariance stations implemented at three contrasting sites (near-natural, cropland, and degraded grassland) to assess the impact of land cover changes on water, energy, and CO2 fluxes. The datasets of the observatory are needed by many modeling and field studies conducted in this region and are made available via the WASCAL database. Moreover, the observatory forms an excellent platform for future investigations and can be used as observational foundation for environmental observatories for an improved assessment of environmental changes and their socioeconomic impacts for the savanna regions of West Africa

    Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives

    Get PDF
    This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures
    corecore