2,001 research outputs found
The mountain iron diffusion program: phase 1 south vandenberg: Volume II
The purpose of the study was to determine an empirical diffusion equation for South Vandenberg. The scope of the operation included 1) tracer releases from two sites near two launch points and collection of diffusion and meteorological data over South Vandenberg; 2) reduction and analysis of diffusion and meteorological data for South Vandenberg. This Volume II contains a detailed discussion of techniques and data analysis. A description of the physical setting of South Vandenberg is contained in both volumes, to provide geographical nomenclature and relationships to the readers. Chapter 2 describes the experimental technique, meteorological support, and some of the problems involved in the program. A summary of the test conditions and data reduction methods is also included. In Chapter 3, a brief presentation of the theory of turbulent diffusion is given. Chapter 4 deals with data aquisition and reduction. Chapter 5 presents the diffusion data in summary form, and discusses the methods used for estimating plume growth. The integration of the data into theoretical relationships is discussed in Chapter 6. The results of brief investigations into other aspects of the Mountain Iron data, such as short-term releases and traj ectory determination, are discussed in Chapter 7. Finally, to lend confidence to use of the data and resulting equations, the Mountain Iron data are compared in several ways in Chapter 8 to earlier data from North Vandenberg and Hanford. Appendices contain a tabulation of the basic diffusion data, a listing of terminology and units, and aircraft sampling results
Trapped-Atom-Interferometer in a Magnetic Microtrap
We propose a configuration of a magnetic microtrap which can be used as an
interferometer for three-dimensionally trapped atoms. The interferometer is
realized via a dynamic splitting potential that transforms from a single well
into two separate wells and back. The ports of the interferometer are
neighboring vibrational states in the single well potential. We present a
one-dimensional model of this interferometer and compute the probability of
unwanted vibrational excitations for a realistic magnetic potential. We
optimize the speed of the splitting process in order suppress these excitations
and conclude that such interferometer device should be feasible with currently
available microtrap technique.Comment: 6 pages, 6 figures, submitted to PR
Entangled light from Bose-Einstein condensates
We propose a method to generate entangled light with a Bose-Einstein
condensate trapped in a cavity, a system realized in recent experiments. The
atoms of the condensate are trapped in a periodic potential generated by a
cavity mode. The condensate is continuously pumped by a laser and spontaneously
emits a pair of photons of different frequencies in two distinct cavity modes.
In this way, the condensate mediates entanglement between two cavity modes
which leak out and can be separated and exhibit continuous variable
entanglement. The scheme exploits the experimentally demonstrated strong,
steady and collective coupling of condensate atoms to a cavity field.Comment: 5 pages and 5 figure
Spin flip lifetimes in superconducting atom chips: BCS versus Eliashberg theory
We investigate theoretically the magnetic spin-flip transitions of neutral
atoms trapped near a superconducting slab. Our calculations are based on a
quantum-theoretical treatment of electromagnetic radiation near dielectric and
metallic bodies. Specific results are given for rubidium atoms near a niobium
superconductor. At the low frequencies typical of the atomic transitions, we
find that BCS theory greatly overestimates coherence effects, which are much
less pronounced when quasiparticle lifetime effects are included through
Eliashberg theory. At 4.2 K, the typical atomic spin lifetime is found to be
larger than a thousand seconds, even for atom-superconductor distances of one
micrometer. This constitutes a large enhancement in comparison with normal
metals.Comment: 10 pages, 4 figure
Multi Mode Interferometer for Guided Matter Waves
We describe the fundamental features of an interferometer for guided matter
waves based on Y-beam splitters and show that, in a quasi two-dimensional
regime, such a device exhibits high contrast fringes even in a multi mode
regime and fed from a thermal source.Comment: Final version (accepted to PRL
Quantum computing with neutral atoms
We develop a method to entangle neutral atoms using cold controlled
collisions. We analyze this method in two particular set-ups: optical lattices
and magnetic micro-traps. Both offer the possibility of performing certain
multi-particle operations in parallel. Using this fact, we show how to
implement efficient quantum error correction and schemes for fault-tolerant
computing.Comment: 21 pages, 19 figure
Zone-plate focusing of Bose-Einstein condensates for atom optics and erasable high-speed lithography of quantum electronic components
We show that Fresnel zone plates, fabricated in a solid surface, can sharply
focus atomic Bose-Einstein condensates that quantum reflect from the surface or
pass through the etched holes. The focusing process compresses the condensate
by orders of magnitude despite inter-atomic repulsion. Crucially, the focusing
dynamics are insensitive to quantum fluctuations of the atom cloud and largely
preserve the condensates' coherence, suggesting applications in passive
atom-optical elements, for example zone plate lenses that focus atomic matter
waves and light at the same point to strengthen their interaction. We explore
transmission zone-plate focusing of alkali atoms as a route to erasable and
scalable lithography of quantum electronic components in two-dimensional
electron gases embedded in semiconductor nanostructures. To do this, we
calculate the density profile of a two-dimensional electron gas immediately
below a patch of alkali atoms deposited on the surface of the nanostructure by
zone-plate focusing. Our results reveal that surface-induced polarization of
only a few thousand adsorbed atoms can locally deplete the electron gas. We
show that, as a result, the focused deposition of alkali atoms by existing zone
plates can create quantum electronic components on the 50 nm scale, comparable
to that attainable by ion beam implantation but with minimal damage to either
the nanostructure or electron gas.Comment: 13 pages, 7 figure
Atomic wave packet dynamics in finite time-dependent optical lattices
Atomic wave packets in optical lattices which are both spatially finite and
time-dependent exhibit many striking similarities with light pulses in photonic
crystals. We analytically characterize the transmission properties of such a
potential geometry for an ideal gas in terms of a position-dependent band
structure. In particular, we find that at specific energies, wave packets at
the center of the finite lattice may be enclosed by pairs of band gaps. These
act as mirrors between which the atomic wave packet is reflected, thereby
effectively yielding a matter wave cavity. We show that long trapping times may
be obtained in such a resonator and investigate the collapse and revival
dynamics of the atomic wave packet by numerical evaluation of the Schr\"odinger
equation
Novel Ferromagnetic Atom Waveguide with in situ loading
Magneto-optic and magnetostatic trapping is realized near a surface using
current carrying coils wrapped around magnetizable cores. A cloud of 10^7
Cesium atoms is created with currents less than 50 mA. Ramping up the current
while maintaining optical dissipation leads to tightly confined atom clouds
with an aspect ratio of 1:1000. We study the 3D character of the magnetic
potential and characterize atom number and density as a function of the applied
current. The field gradient in the transverse dimension has been varied from <
10 G/cm to > 1 kG/cm. By loading and cooling atoms in-situ, we have eliminated
the problem of coupling from a MOT into a smaller phase space.Comment: 4 pages, 4 figure
Optics with an Atom Laser Beam
We report on the atom optical manipulation of an atom laser beam. Reflection,
focusing and its storage in a resonator are demonstrated. Precise and versatile
mechanical control over an atom laser beam propagating in an inhomogeneous
magnetic field is achieved by optically inducing spin-flips between atomic
ground states with different magnetic moment. The magnetic force acting on the
atoms can thereby be effectively switched on and off. The surface of the atom
optical element is determined by the resonance condition for the spin-flip in
the inhomogeneous magnetic field. A mirror reflectivity of more than 98% is
measured
- …