120 research outputs found
Current derivative estimation for sensorless motor drives
The work presented in this thesis aims to improve the performance of the Fundamental PWM sensorless control technique by proposing a new way to estimate current derivatives in the presence of high frequency oscillations. The Fundamental PWM technique offers performance across the entire speed range (including zero speed). The method requires current derivative measurements when certain PWM (Pulse Width Modulation) active and null vectors are applied to the machine. However the switching action of the active devices in the inverter and the associated large dv/dt result in current and current derivative waveforms being affected by high frequency oscillations which prevent accurate measurement of the current derivative. Other approaches have allowed these oscillations to decay before attempting to take a derivative measurement. This requires that the PWM vectors are applied to the machine for a time sufficient to allow the oscillations to decay and a derivative measurement to be made (the minimum pulse width). On some occasions this time is longer than the time a vector would have normally been applied for (for example when operating at low speed) and the vectors must be extended and later compensated. Vector extension introduces undesirable current distortion, audible noise, torque ripple and vibration.
In this thesis the high frequency oscillations and their sources are investigated and a method of using Artificial Neural Networks to estimate current derivatives using only a short window of the transient current response is proposed. The method is able to estimate the derivative directly from phase current measurements affected by high frequency oscillations and thus allows a reduction in the minimum pulse width to be achieved (since it is no longer necessary to wait for the oscillations to fully decay) without the need for dedicated current derivative sensors. The performance of the technique is validated with experimental results
Current derivative estimation for sensorless motor drives
The work presented in this thesis aims to improve the performance of the Fundamental PWM sensorless control technique by proposing a new way to estimate current derivatives in the presence of high frequency oscillations. The Fundamental PWM technique offers performance across the entire speed range (including zero speed). The method requires current derivative measurements when certain PWM (Pulse Width Modulation) active and null vectors are applied to the machine. However the switching action of the active devices in the inverter and the associated large dv/dt result in current and current derivative waveforms being affected by high frequency oscillations which prevent accurate measurement of the current derivative. Other approaches have allowed these oscillations to decay before attempting to take a derivative measurement. This requires that the PWM vectors are applied to the machine for a time sufficient to allow the oscillations to decay and a derivative measurement to be made (the minimum pulse width). On some occasions this time is longer than the time a vector would have normally been applied for (for example when operating at low speed) and the vectors must be extended and later compensated. Vector extension introduces undesirable current distortion, audible noise, torque ripple and vibration.
In this thesis the high frequency oscillations and their sources are investigated and a method of using Artificial Neural Networks to estimate current derivatives using only a short window of the transient current response is proposed. The method is able to estimate the derivative directly from phase current measurements affected by high frequency oscillations and thus allows a reduction in the minimum pulse width to be achieved (since it is no longer necessary to wait for the oscillations to fully decay) without the need for dedicated current derivative sensors. The performance of the technique is validated with experimental results
Use of optical fibres for multi-parameter monitoring in electrical AC machines
This paper describes a new approach to multi-parameter monitoring for electrical AC machines. It is demonstrated that speed, torque and temperature can be measured using optical fibres incorporating sensors in the form of fibre Bragg gratings (FBGs) distributed around the machine. One fibre can incorporate several FBGs and hence provide several measurements. Experimental results showing speed, torque, direction of rotation, stator housing vibration and temperature measured using the FBG method are presented and validated against measurements obtained from conventional sensors. The results show that the optical fibre based approach allows multiple parameters to be monitored accurately and simultaneously with only a fraction of the usual monitoring equipment required. Another advantage of the proposed method is the EMI immunity naturally provided by optical solutions. The presented measurement technique can also offer a new alternative approach to sensorless control
High-level real-time programming in Java
Real-time systems have reached a level of complexity beyond the scaling capability of the low-level or restricted languages traditionally used for real-time programming. While Metronome garbage collection has made it practical to use Java to implement real-time systems, many challenges remain for the construction of complex real-time systems, some specic to the use of Java and others simply due to the change in scale of such systems. The goal of our research is the creation of a comprehensive Java-based programming environment and methodology for the creation of complex real-time systems. Our goals include construction of a provably correct real-time garbage collec-tor capable of providing worst case latencies of 100 s, capa-ble of scaling from sensor nodes up to large multiprocessors; specialized programming constructs that retain the safety and simplicity of Java, and yet provide sub-microsecond la-tencies; the extension of Java's \write once, run anywhere" principle from functional correctness to timing behavior; on-line analysis and visualization that aids in the understanding of complex behaviors; and a principled probabilistic analy-sis methodology for bounding the behavior of the resulting systems. While much remains to be done, this paper describes the progress we have made towards these goals
AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons
Hypothalamic AMP-activated protein kinase (AMPK) has been suggested to act as a key sensing mechanism, responding to hormones and nutrients in the regulation of energy homeostasis. However, the precise neuronal populations and cellular mechanisms involved are unclear. The effects of long-term manipulation of hypothalamic AMPK on energy balance are also unknown. To directly address such issues, we generated POMC alpha 2KO and AgRP alpha 2KO mice lacking AMPK alpha 2 in proopiomelanocortin- (POMC-) and agouti-related protein-expressing (AgRP-expressing) neurons, key regulators of energy homeostasis. POMC alpha 2KO mice developed obesity due to reduced energy expenditure and dysregulated food intake but remained sensitive to leptin. in contrast, AgRPa2KO mice developed an age-dependent lean phenotype with increased sensitivity to a melanocortin agonist. Electrophysiological studies in AMPK alpha 2-deficient POMC or AgRP neurons revealed normal leptin or insulin action but absent responses to alterations in extracellular glucose levels, showing that glucose-sensing signaling mechanisms in these neurons are distinct from those pathways utilized by leptin or insulin. Taken together with the divergent phenotypes of POMC alpha 2KO and AgRP alpha 2KO mice, our findings suggest that while AMPK plays a key role in hypothalamic function, it does not act as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus
Association of Forced Vital Capacity with the Developmental Gene <i>NCOR2</i>
Background Forced Vital Capacity (FVC) is an important predictor of all-cause mortality in the absence of chronic respiratory conditions. Epidemiological evidence highlights the role of early life factors on adult FVC, pointing to environmental exposures and genes affecting lung development as risk factors for low FVC later in life. Although highly heritable, a small number of genes have been found associated with FVC, and we aimed at identifying further genetic variants by focusing on lung development genes. Methods Per-allele effects of 24,728 SNPs in 403 genes involved in lung development were tested in 7,749 adults from three studies (NFBC1966, ECRHS, EGEA). The most significant SNP for the top 25 genes was followed-up in 46,103 adults (CHARGE and SpiroMeta consortia) and 5,062 chi
The Eruption of the Candidate Young Star ASASSN-15qi
Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star-disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The mag brightening in the band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission from K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km/s. The wind and hot gas both disappeared as the outburst faded and the source the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10-20 days. Fluorescent excitation of H is detected in emission from vibrational levels as high as , also with a possible time delay in flux increase. The mid-infrared spectral energy distribution does not indicate the presence of warm dust emission, although the optical photospheric absorption and CO overtone emission could be related to a gaseous disk. Archival photometry reveals a prior outburst in 1976. Although we speculate about possible causes for this outburst, none of the explanations are compelling
Management of patients with advanced prostate cancerâmetastatic and/or castration-resistant prostate cancer: report of the Advanced Prostate Cancer Consensus Conference (APCCC) 2022
Background: Innovations in imaging and molecular characterisation together with novel treatment options have improved outcomes in advanced prostate cancer. However, we still lack high-level evidence in many areas relevant to making management decisions in daily clinical practise. The 2022 Advanced Prostate Cancer Consensus Conference (APCCC 2022) addressed some questions in these areas to supplement guidelines that mostly are based on level 1 evidence.
Objective: To present the voting results of the APCCC 2022.
Design, setting, and participants: The experts voted on controversial questions where high- level evidence is mostly lacking: locally advanced prostate cancer; biochemical recurrence after local treatment; metastatic hormone-sensitive, non-metastatic, and metastatic castration- resistant prostate cancer; oligometastatic prostate cancer; and managing side effects of hormonal therapy. A panel of 105 international prostate cancer experts voted on the consensus questions.
Outcome measurements and statistical analysis: The panel voted on 198 pre-defined questions, which were developed by 117 voting and non-voting panel members prior to the conference following a modified Delphi process. A total of 116 questions on metastatic and/or castration- resistant prostate cancer are discussed in this manuscript. In 2022, the voting was done by a web-based survey because of COVID-19 restrictions. Results and limitations: The voting reflects the expert opinion of these panellists and did not incorporate a standard literature review or formal meta-analysis. The answer options for the consensus questions received varying degrees of support from panellists, as reflected in this article and the detailed voting results are reported in the supplementary material. We report here on topics in metastatic, hormone-sensitive prostate cancer (mHSPC), non-metastatic, castration-resistant prostate cancer (nmCRPC), metastatic castration-resistant prostate cancer (mCRPC), and oligometastatic and oligoprogressive prostate cancer.
Conclusions: These voting results in four specific areas from a panel of experts in advanced prostate cancer can help clinicians and patients navigate controversial areas of management for which high-level evidence is scant or conflicting and can help research funders and policy makers identify information gaps and consider what areas to explore further. However, diagnostic and treatment decisions always have to be individualised based on patient characteristics, including the extent and location of disease, prior treatment(s), co-morbidities, patient preferences, and treatment recommendations and should also incorporate current and emerging clinical evidence and logistic and economic factors. Enrolment in clinical trials is strongly encouraged. Importantly, APCCC 2022 once again identified important gaps where there is non-consensus and that merit evaluation in specifically designed trials.
Patient summary: The Advanced Prostate Cancer Consensus Conference (APCCC) provides a forum to discuss and debate current diagnostic and treatment options for patients with advanced prostate cancer. The conference aims to share the knowledge of international experts in prostate cancer with healthcare providers worldwide. At each APCCC, an expert panel votes on pre-defined questions that target the most clinically relevant areas of advanced prostate cancer treatment for which there are gaps in knowledge. The results of the voting provide a practical guide to help clinicians discuss therapeutic options with patients and their relatives as part of shared and multidisciplinary decision-making. This report focuses on the advanced setting, covering metastatic hormone-sensitive prostate cancer and both non-metastatic and metastatic castration-resistant prostate cancer.
Twitter summary: Report of the results of APCCC 2022 for the following topics: mHSPC, nmCRPC, mCRPC, and oligometastatic prostate cancer.
Take-home message: At APCCC 2022, clinically important questions in the management of advanced prostate cancer management were identified and discussed, and experts voted on pre-defined consensus questions. The report of the results for metastatic and/or castration- resistant prostate cancer is summarised here
Treatment effects may remain the same even when trial participants differed from the target population
Objective
RCTs have been criticised for lacking external validity. We assessed whether a trial in people with type I diabetes mellitus (T1DM) mirrored the wider population, and applied sample-weighting methods to assess the impact of differences on our trial's findings.
Study design and setting
The REPOSE trial was nested within a large UK cohort capturing demographic, clinical and quality of life (QoL) data for people with T1DM undergoing structured diabetes-specific education. We firstly assessed whether our RCT participants were comparable to this cohort using propensity score modelling. Following this we re-weighted the trial population to better match the wider cohort and re-estimated the treatment effect.
Results
Trial participants differed from the cohort in regards to sex, weight, HbA1c and also QoL and satisfaction with current treatment. Nevertheless, the treatment effects derived from alternative model weightings were similar to that of the original RCT.
Conclusions
Our RCT participants differed in composition to the wider population but the original findings were unaffected by sampling adjustments. We encourage investigators take steps to address criticisms of generalisability, but doing so is problematic: external data, even if available, may contain limited information and analyses can be susceptible to model misspecification
Autoantibodies against type I IFNs in patients with critical influenza pneumonia
In an international cohort of 279 patients with hypoxemic influenza pneumonia, we identified 13 patients (4.6%) with autoantibodies neutralizing IFN-alpha and/or -omega, which were previously reported to underlie 15% cases of life-threatening COVID-19 pneumonia and one third of severe adverse reactions to live-attenuated yellow fever vaccine. Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-alpha 2 alone (five patients) or with IFN-omega (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-alpha 2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-omega. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients 70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-alpha 2 and IFN-omega (OR = 11.7, P = 1.3 x 10(-5)), especially those <70 yr old (OR = 139.9, P = 3.1 x 10(-10)). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for similar to 5% of cases of life-threatening influenza pneumonia in patients <70 yr old
- âŠ