78 research outputs found

    Sustained inflation at birth did not alter lung injury from mechanical ventilation in surfactant-treated fetal lambs.

    Get PDF
    BackgroundSustained inflations (SI) are used with the initiation of ventilation at birth to rapidly recruit functional residual capacity and may decrease lung injury and the need for mechanical ventilation in preterm infants. However, a 20 second SI in surfactant-deficient preterm lambs caused an acute phase injury response without decreasing lung injury from subsequent mechanical ventilation.HypothesisA 20 second SI at birth will decrease lung injury from mechanical ventilation in surfactant-treated preterm fetal lambs.MethodsThe head and chest of fetal sheep at 126±1 day GA were exteriorized, with tracheostomy and removal of fetal lung fluid prior to treatment with surfactant (300 mg in 15 ml saline). Fetal lambs were randomized to one of four 15 minute interventions: 1) PEEP 8 cmH2O; 2) 20 sec SI at 40 cmH2O, then PEEP 8 cmH2O; 3) mechanical ventilation with 7 ml/kg tidal volume; or 4) 20 sec SI then mechanical ventilation at 7 ml/kg. Fetal lambs remained on placental support for the intervention and for 30 min after the intervention.ResultsSI recruited a mean volume of 6.8±0.8 mL/kg. SI did not alter respiratory physiology during mechanical ventilation. Heat shock protein (HSP) 70, HSP60, and total protein in lung fluid similarly increased in both ventilation groups. Modest pro-inflammatory cytokine and acute phase responses, with or without SI, were similar with ventilation. SI alone did not increase markers of injury.ConclusionIn surfactant treated fetal lambs, a 20 sec SI did not alter ventilation physiology or markers of lung injury from mechanical ventilation

    Surfactant-assisted distal pulmonary distribution of Budesonide revealed by mass spectrometry imaging

    Get PDF
    13openInternationalBothDirect lung administration of budesonide in combination with surfactant reduces the incidence of bronchopulmonary dysplasia. Although the therapy is currently undergoing clinical development, the lung distribution of budesonide throughout the premature neonatal lung has not yet been investigated. Here, we applied mass spectrometry imaging (MSI) to investigate the surfactant-assisted distal lung distribution of budesonide. Unlabeled budesonide was either delivered using saline as a vehicle (n = 5) or in combination with a standard dose of the porcine surfactant Poractant alfa (n = 5). These lambs were ventilated for one minute, and then the lungs were extracted for MSI analysis. Another group of lambs (n = 5) received the combination of budesonide and Poractant alfa, followed by two hours of mechanical ventilation. MSI enabled the label-free detection and visualization of both budesonide and the essential constituent of Poractant alfa, the porcine surfactant protein C (SP-C). 2D ion intensity images revealed a non-uniform distribution of budesonide with saline, which appeared clustered in clumps. In contrast, the combination therapy showed a more homogeneous distribution of budesonide throughout the sample, with more budesonide distributed towards the lung periphery. We found similar distribution patterns for the SP-C and budesonide in consecutive lung tissue sections, indicating that budesonide was transported across the lungs associated with the exogenous surfactant. After two hours of mechanical ventilation, the budesonide intensity signal in the 2D ion intensity maps dropped dramatically, suggesting a rapid lung clearance and highlighting the relevance of achieving a uniform surfactant-assisted lung distribution of budesonide early after delivery to maximize the anti-inflammatory and maturational effects throughout the lungopenZecchi, Riccardo; Franceschi, Pietro; Tigli, Laura; Pioselli, Barbara; Mileo, Valentina; Murgia, Xabier; Salomone, Fabrizio; Pieraccini, Giuseppe; Usada, Haruo; Schmidt, Augusto F; Hillman, Noah H.; Kemp, Matthew W.; Jobe, Alan H.Zecchi, R.; Franceschi, P.; Tigli, L.; Pioselli, B.; Mileo, V.; Murgia, X.; Salomone, F.; Pieraccini, G.; Usada, H.; Schmidt, A.F.; Hillman, N.H.; Kemp, M.W.; Jobe, A.H

    Total Protein and Heat Shock Proteins in FLF and BAL.

    No full text
    <p>Heat shock protein (HSP) Fetal Lung Fluid (FLF) Bronchoalveolar lavage fluid (BALF) Values: Mean ± SEM.</p><p>* p<0.05 vs PEEP and SI groups.</p><p>Total Protein and Heat Shock Proteins in FLF and BAL.</p

    Groups, intra-amniotic (IA) exposures, gestational age and ventilation variables.

    No full text
    <p>(a) Gisslen <i>et al</i>. Innate immunity 2013 <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0096087#pone.0096087-Gisslen1" target="_blank">[12]</a>, (b) Collins <i>et al</i>. AJP-Lung 2010 <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0096087#pone.0096087-Collins1" target="_blank">[10]</a>, (c) Polglase et al. Pediatr Res 2010<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0096087#pone.0096087-Polglase1" target="_blank">[11]</a></p
    corecore