19 research outputs found

    Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy

    Get PDF
    Background: Living tissues contain a range of intrinsic fluorophores and sources of second harmonic generation which provide contrast that can be exploited for fresh tissue imaging. Microscopic imaging of fresh tissue samples can circumvent the cost and time associated with conventional histology. Further, intrinsic contrast can provide rich information about a tissue\u27s composition, structure and function, and opens the potential for in-vivo imaging without the need for contrast agents. Methodology/Principal Findings: In this study, we used hyperspectral two-photon microscopy to explore the characteristics of both normal and diseased gastrointestinal (GI) tissues, relying only on their endogenous fluorescence and second harmonic generation to provide contrast. We obtained hyperspectral data at subcellular resolution by acquiring images over a range of two-photon excitation wavelengths, and found excitation spectral signatures of specific tissue types based on our ability to clearly visualize morphology. We present the two-photon excitation spectral properties of four major tissue types that are present throughout the GI tract: epithelium, lamina propria, collagen, and lymphatic tissue. Using these four excitation signatures as basis spectra, linear unmixing strategies were applied to hyperspectral data sets of both normal and neoplastic tissue acquired in the colon and small intestine. Our results show that hyperspectral unmixing with excitation spectra allows segmentation, showing promise for blind identification of tissue types within a field of view, analogous to specific staining in conventional histology. The intrinsic spectral signatures of these tissue types provide information relating to their biochemical composition. Conclusions/Significance: These results suggest hyperspectral two-photon microscopy could provide an alternative to conventional histology either for in-situ imaging, or intraoperative \u27instant histology\u27 of fresh tissue biopsies. © 2011 Grosberg et al

    Unsupervised Deconvolution of Dynamic Imaging Reveals Intratumor Vascular Heterogeneity and Repopulation Dynamics

    Get PDF
    With the existence of biologically distinctive malignant cells originated within the same tumor, intratumor functional heterogeneity is present in many cancers and is often manifested by the intermingled vascular compartments with distinct pharmacokinetics. However, intratumor vascular heterogeneity cannot be resolved directly by most in vivo dynamic imaging. We developed multi-tissue compartment modeling (MTCM), a completely unsupervised method of deconvoluting dynamic imaging series from heterogeneous tumors that can improve vascular characterization in many biological contexts. Applying MTCM to dynamic contrast-enhanced magnetic resonance imaging of breast cancers revealed characteristic intratumor vascular heterogeneity and therapeutic responses that were otherwise undetectable. MTCM is readily applicable to other dynamic imaging modalities for studying intratumor functional and phenotypic heterogeneity, together with a variety of foreseeable applications in the clinic

    Ex situ perfusion fixation for brain banking: a technical report

    Get PDF
    Perfusion fixation is a well-established technique in animal research to improve preservation quality in the study of many tissues, including the brain. There is a growing interest in using perfusion to fix postmortem human brain tissue to achieve the highest fidelity preservation for downstream high-resolution morphomolecular brain mapping studies. Numerous practical barriers arise when applying perfusion fixation in brain banking settings, including the large mass of the organ, degradation of vascular integrity and patency prior to the start of the procedure, and differing investigator goals sometimes necessitating part of the brain to be frozen. As a result, there is a critical need to establish a perfusion fixation procedure in brain banking that is flexible and scalable. This technical report describes our approach to developing an ex situ perfusion fixation protocol. We discuss the challenges encountered and lessons learned while implementing this procedure. Routine morphological staining and RNA in situ hybridization data show that the perfused brains have well-preserved tissue cytoarchitecture and intact biomolecular signal. However, it remains uncertain whether this procedure leads to improved histology quality compared to immersion fixation. Additionally, ex vivo magnetic resonance imaging (MRI) data suggest that the perfusion fixation protocol may introduce imaging artifacts in the form of air bubbles in the vasculature. We conclude with further research directions to investigate the use of perfusion fixation as a rigorous and reproducible alternative to immersion fixation for the preparation of postmortem human brains

    <title>Radiosity diffusion model in 3D</title>

    No full text
    We present the Radiosity-Diffusion model in three dimensions (3D), as an extension to previous work in 2D. It is a method for handling non-scattering spaces in optically participating media. We present the extension of the model to 3D including an extension to the model to cope with increased complexity of the 3D domain. We show that in 3D more careful consideration must be given to the issues of meshing and visibility to model the transport of light within reasonable computational bounds. We demonstrate the model to be comparable to Monte-Carlo simulations for selected geometries, and show preliminary results of comparisons to measured time-resolved data acquired on resin phantoms.</p

    Time resolved optical tomography of the human forearm

    No full text
    A 32-channel time-resolved optical imaging instrument has been developed principally to study functional parameters of the new-born infant brain. As a prelude to studies on infants, the device and image reconstruction methodology have been evaluated on the adult human forearm. Cross-sectional images were generated using time-resolved measurements of transmitted light at two wavelengths. All data were acquired using a fully automated computer-controlled protocol. Images representing the internal scattering and absorbing properties of the arm are presented, as well as images that reveal physiological changes during a simple finger flexion exercise. The results presented in this paper represent the first simultaneous tomographic reconstruction of the internal scattering and absorbing properties of a clinical subject using purely temporal data, with additional co-registered difference images showing repeatable absorption changes at two wavelengths in response to exercise.</p

    Calibration techniques and datatype extraction for time-resolved optical tomography

    No full text
    This article describes the preprocessing and calibration methods currently applied to data acquired with the University College London multichannel time-resolved optical tomography system. We briefly outline the imaging system and describe the features of our experimentally collected data, sources of stochastic noise, and systematic errors. We examine two methods of calibrating data: "difference imaging" using two image data sets with and without the features of interest to produce an image, and "absolute imaging" using an independent calibration measurement. We describe the methods developed to apply each calibration to raw data. Although the difference imaging performed is found to produce images with fewer artifacts, analysis indicates that it will not be directly applicable for clinical applications. Also examined are the effects of using a two dimensional (2D) reconstruction scheme to produce images from measured data. For absolute imaging, artifacts are shown to dominate such images even in the case of a homogeneous third dimension. The feasibility of deriving an ad-hoc correction factor to allow the use of a 2D reconstruction for measured data is examined, and is shown to reduce artifact. Difference imaging is demonstrated to be more robust to such effects.</p

    Method for three-dimensional time-resolved optical tomography

    No full text
    We present an overview of time-resolved optical tomography together with the hardware and software methods that we have developed for a clinical instrument that implements this modality. The hardware is based on a multichannel photon-counting technique that records the histograms of photons time-of-flight through highly scattering and attenuating media. The software is based on a finite element model that is iteratively updated in order to minimize the difference between measured and modeled data. We have presented a first experimental reconstruction of a three-dimensional (3D) distribution of variable absorption and scattering coefficient, together with an ideal simulation of the same case.</p
    corecore