397 research outputs found
Quantum mechanics of lattice gas automata. I. One particle plane waves and potentials
Classical lattice gas automata effectively simulate physical processes such
as diffusion and fluid flow (in certain parameter regimes) despite their
simplicity at the microscale. Motivated by current interest in quantum
computation we recently defined quantum lattice gas automata; in this paper we
initiate a project to analyze which physical processes these models can
effectively simulate. Studying the single particle sector of a one dimensional
quantum lattice gas we find discrete analogues of plane waves and wave packets,
and then investigate their behaviour in the presence of inhomogeneous
potentials.Comment: 19 pages, plain TeX, 14 PostScript figures included with epsf.tex
(ignore the under/overfull \vbox error messages), two additional large
figures available upon reques
From quantum cellular automata to quantum lattice gases
A natural architecture for nanoscale quantum computation is that of a quantum
cellular automaton. Motivated by this observation, in this paper we begin an
investigation of exactly unitary cellular automata. After proving that there
can be no nontrivial, homogeneous, local, unitary, scalar cellular automaton in
one dimension, we weaken the homogeneity condition and show that there are
nontrivial, exactly unitary, partitioning cellular automata. We find a one
parameter family of evolution rules which are best interpreted as those for a
one particle quantum automaton. This model is naturally reformulated as a two
component cellular automaton which we demonstrate to limit to the Dirac
equation. We describe two generalizations of this automaton, the second of
which, to multiple interacting particles, is the correct definition of a
quantum lattice gas.Comment: 22 pages, plain TeX, 9 PostScript figures included with epsf.tex
(ignore the under/overfull \vbox error messages); minor typographical
corrections and journal reference adde
The left superior temporal gyrus is a shared substrate for auditory short-term memory and speech comprehension: evidence from 210 patients with stroke
Competing theories of short-term memory function make specific predictions about the functional anatomy of auditory short-term memory and its role in language comprehension. We analysed high-resolution structural magnetic resonance images from 210 stroke patients and employed a novel voxel based analysis to test the relationship between auditory short-term memory and speech comprehension. Using digit span as an index of auditory short-term memory capacity we found that the structural integrity of a posterior region of the superior temporal gyrus and sulcus predicted auditory short-term memory capacity, even when performance on a range of other measures was factored out. We show that the integrity of this region also predicts the ability to comprehend spoken sentences. Our results therefore support cognitive models that posit a shared substrate between auditory short-term memory capacity and speech comprehension ability. The method applied here will be particularly useful for modelling structure–function relationships within other complex cognitive domains
Lyapunov spectral analysis of a nonequilibrium Ising-like transition
By simulating a nonequilibrium coupled map lattice that undergoes an
Ising-like phase transition, we show that the Lyapunov spectrum and related
dynamical quantities such as the dimension correlation length~ are
insensitive to the onset of long-range ferromagnetic order. As a function of
lattice coupling constant~ and for certain lattice maps, the Lyapunov
dimension density and other dynamical order parameters go through a minimum.
The occurrence of this minimum as a function of~ depends on the number of
nearest neighbors of a lattice point but not on the lattice symmetry, on the
lattice dimensionality or on the position of the Ising-like transition. In
one-space dimension, the spatial correlation length associated with magnitude
fluctuations and the length~ are approximately equal, with both
varying linearly with the radius of the lattice coupling.Comment: 29 pages of text plus 15 figures, uses REVTeX macros. Submitted to
Phys. Rev. E
Rationale and design of the Early valve replacement in severe ASYmptomatic Aortic Stenosis Trial
Background: Aortic valve replacement in asymptomatic severe aortic stenosis is controversial. The Early valve replacement in severe ASYmptomatic Aortic Stenosis (EASY-AS) trial aims to determine whether early aortic valve replacement improves clinical outcomes, quality of life and cost-effectiveness compared to a guideline recommended strategy of ‘watchful waiting’. Methods: In a pragmatic international, open parallel group randomized controlled trial (NCT04204915), 2844 patients with severe aortic stenosis will be randomized 1:1 to either a strategy of early (surgical or transcatheter) aortic valve replacement or aortic valve replacement only if symptoms or impaired left ventricular function develop, or other cardiac surgery becomes nessessary. Exclusion criteria include other severe valvular disease, planned cardiac surgery, ejection fraction <50%, previous aortic valve replacement or life expectancy <2 years. The primary outcome is a composite of cardiovascular mortality or heart failure hospitalization. The primary analysis will be undertaken when 663 primary events have accrued, providing 90% power to detect a reduction in the primary endpoint from 27.7% to 21.6% (hazard ratio 0.75). Secondary endpoints include disability-free survival, days alive and out of hospital, major adverse cardiovascular events and quality of life. Results: Recruitment commenced in March 2020 and is open in the UK, Australia, New Zealand, and Serbia. Feasibility requirements were met in July 2022, and the main phase opened in October 2022, with additional international centers in set-up. Conclusions: The EASY-AS trial will establish whether a strategy of early aortic valve replacement in asymptomatic patients with severe aortic stenosis reduces cardiovascular mortality or heart failure hospitalization and improves other important outcomes.</p
A Comparison of Phylogenetic Network Methods Using Computer Simulation
Background: We present a series of simulation studies that explore the relative performance of several phylogenetic network approaches (statistical parsimony, split decomposition, union of maximum parsimony trees, neighbor-net, simulated history recombination upper bound, median-joining, reduced median joining and minimum spanning network) compared to standard tree approaches, (neighbor-joining and maximum parsimony) in the presence and absence of recombination. Principal Findings: In the absence of recombination, all methods recovered the correct topology and branch lengths nearly all of the time when the substitution rate was low, except for minimum spanning networks, which did considerably worse. At a higher substitution rate, maximum parsimony and union of maximum parsimony trees were the most accurate. With recombination, the ability to infer the correct topology was halved for all methods and no method could accurately estimate branch lengths. Conclusions: Our results highlight the need for more accurate phylogenetic network methods and the importance of detecting and accounting for recombination in phylogenetic studies. Furthermore, we provide useful information for choosing a network algorithm and a framework in which to evaluate improvements to existing methods and nove
Differential effects of glucagon-like peptide-1 receptor agonists on heart rate
Abstract
While glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are known to increase heart rate (HR), it is insufficiently recognized that the extent varies greatly between the various agonists and is affected by the assessment methods employed. Here we review published data from 24-h time-averaged HR monitoring in healthy individuals and subjects with type 2 diabetes mellitus (T2DM) treated with either short-acting GLP-1 RAs, lixisenatide or exenatide, or long-acting GLP-1 RAs, exenatide LAR, liraglutide, albiglutide, or dulaglutide (N\ua0=\ua01112; active-treatment arms). HR effects observed in two independent head-to-head trials of lixisenatide and liraglutide (N\ua0=\ua0202; active-treatment arms) are also reviewed. Short-acting GLP-1 RAs, exenatide and lixisenatide, are associated with a transient (1\u201312\ua0h) mean placebo- and baseline-adjusted 24-h HR increase of 1\u20133\ua0beats per minute (bpm). Conversely, long-acting GLP-1 RAs are associated with more pronounced increases in mean 24-h HR; the highest seen with liraglutide and albiglutide at 6\u201310\ua0bpm compared with dulaglutide and exenatide LAR at 3\u20134\ua0bpm. For both liraglutide and dulaglutide, HR increases were recorded during both the day and at night. In two head-to-head comparisons, a small, transient mean increase in HR from baseline was observed with lixisenatide; liraglutide induced a substantially greater increase that remained significantly elevated over 24\ua0h. The underlying mechanism for increased HR remains to be elucidated; however, it could be related to a direct effect at the sinus node and/or stimulation of the sympathetic nervous system, with this effect related to the duration of action of the respective GLP-1 RAs. In conclusion, this review indicates that the effects on HR differ within the class of GLP-1 RAs: short-acting GLP-1 RAs are associated with a modest and transient HR increase before returning to baseline levels, while some long-acting GLP-1 RAs are associated with a more pronounced and sustained increase during the day and night. Findings from recently completed trials indicate that a GLP-1 RA-induced increase in HR, regardless of magnitude, does not present an increased cardiovascular risk for subjects with T2DM, although a pronounced increase in HR may be associated with adverse clinical outcomes in those with advanced heart failure
Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life
Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Systematic Biology 59 (2010): 518-533, doi:10.1093/sysbio/syq037.An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations
underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes.
Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’,
many of which receive strong support in phylogenomic analyses. However, the abundance of
data in phylogenomic analyses can lead to highly supported but incorrect relationships due to
systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer)
included in these genomic studies may exaggerate systematic error and reduces power to
evaluate hypotheses. Here, we use a taxon-rich strategy to assess eukaryotic relationships. We
show that analyses emphasizing broad taxonomic sampling (up to 451 taxa representing 72
major lineages) combined with a moderate number of genes yield a well-resolved eukaryotic tree
of life. The consistency across analyses with varying numbers of taxa (88-451) and levels of
missing data (17-69%) supports the accuracy of the resulting topologies. The resulting stable
topology emerges without the removal of rapidly evolving genes or taxa, a practice common to
phylogenomic analyses. Several major groups are stable and strongly supported in these
analyses (e.g. SAR, Rhizaria, Excavata), while the proposed supergroup ‘Chromalveolata’ is
rejected. Further, extensive instability among photosynthetic lineages suggests the presence of
systematic biases including endosymbiotic gene transfer from symbiont (nucleus or plastid) to
host. Our analyses demonstrate that stable topologies of ancient evolutionary relationships can
be achieved with broad taxonomic sampling and a moderate number of genes. Finally, taxonrich
analyses such as presented here provide a method for testing the accuracy of relationships
that receive high bootstrap support in phylogenomic analyses and enable placement of the
multitude of lineages that lack genome scale data
- …