7,590 research outputs found

    Type-I superconductivity in noncentrosymmetric superconductor AuBe

    Full text link
    The noncentrosymmetric superconductor AuBe have been investigated using the magnetization, resistivity, specific heat, and muon-spin relaxation/rotation measurements. AuBe crystallizes in the cubic FeSi-type B20 structure with superconducting transition temperature observed at TcT_{c} = 3.2 ±\pm 0.1 K. The low-temperature specific heat data, CelC_{el}(T), indicate a weakly-coupled fully gapped BCS superconductivity with an isotropic energy gap 2Δ(0)/kBTc\Delta(0)/k_{B}T_{c} = 3.76, which is close to the BCS value of 3.52. Interestingly, type-I superconductivity is inferred from the μ\muSR measurements, which is in contrast with the earlier reports of type-II superconductivity in AuBe. The Ginzburg-Landau parameter is κGL\kappa_{GL} = 0.4 << 1/2\sqrt{2}. The transverse-field μ\muSR data transformed in the maximum entropy spectra depicting the internal magnetic field probability distribution, P(H), also confirms the absence of the mixed state in AuBe. The thermodynamic critical field, HcH_{c}, calculated to be around 259 Oe. The zero-field μ\muSR results indicate that time-reversal symmetry is preserved and supports a spin-singlet pairing in the superconducting ground state.Comment: 9 pages, 9 figure

    Probing the superconducting ground state of the rare-earth ternary boride superconductors RRRuB2_2 (RR = Lu,Y) using muon-spin rotation and relaxation

    Get PDF
    The superconductivity in the rare-earth transition metal ternary borides RRRuB2_2 (where RR = Lu and Y) has been investigated using muon-spin rotation and relaxation. Measurements made in zero-field suggest that time-reversal symmetry is preserved upon entering the superconducting state in both materials; a small difference in depolarization is observed above and below the superconducting transition in both compounds, however this has been attributed to quasistatic magnetic fluctuations. Transverse-field measurements of the flux-line lattice indicate that the superconductivity in both materials is fully gapped, with a conventional s-wave pairing symmetry and BCS-like magnitudes for the zero-temperature gap energies. The electronic properties of the charge carriers in the superconducting state have been calculated, with effective masses m∗/me=m^*/ m_\mathrm{e} = 9.8±0.19.8\pm0.1 and 15.0±0.115.0\pm0.1 in the Lu and Y compounds, respectively, with superconducting carrier densities ns=n_\mathrm{s} = (2.73±0.042.73\pm0.04) ×1028\times 10^{28} m−3^{-3} and (2.17±0.022.17\pm0.02) ×1028\times 10^{28} m−3^{-3}. The materials have been classified according to the Uemura scheme for superconductivity, with values for Tc/TFT_\mathrm{c}/T_\mathrm{F} of 1/(414±6)1/(414\pm6) and 1/(304±3)1/(304\pm3), implying that the superconductivity may not be entirely conventional in nature.Comment: 8 pages, 8 figure
    • …
    corecore