18 research outputs found

    Neural Architecture of Hunger-Dependent Multisensory Decision Making in C. elegans

    Get PDF
    Little is known about how animals integrate multiple sensory inputs in natural environments to balance avoidance of danger with approach to things of value. Furthermore, the mechanistic link between internal physiological state and threat-reward decision making remains poorly understood. Here we confronted C. elegans worms with the decision whether to cross a hyperosmotic barrier presenting the threat of desiccation to reach a source of food odor. We identified a specific interneuron that controls this decision via top-down extrasynaptic aminergic potentiation of the primary osmosensory neurons to increase their sensitivity to the barrier. We also establish that food deprivation increases the worm's willingness to cross the dangerous barrier by suppressing this pathway. These studies reveal a potentially general neural circuit architecture for internal state control of threat-reward decision making

    Origins Space Telescope: baseline mission concept

    Get PDF
    The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid- and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20  μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250  μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588  μm, making wide-area and deep spectroscopic surveys with spectral resolving power R  ∼  300, and pointed observations at R  ∼  40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins’ natural background-limited sensitivity

    Researching women's attitudes

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:99/20379 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Bronchoscopy following diagnosis with cystic fibrosis

    No full text
    We recently changed our practice to perform bronchoscopy following diagnosis with cystic fibrosis. On a retrospective review of 25 children, Pseudomonas aeruginosa was detected in bronchoalveolar lavage for the first time in five children (20%) and Staphylococcus aureus in four (16%). Lavage culture was positive in eight of 18 children without respiratory symptoms. This highlights the potential of bronchoscopy following diagnosis, even in asymptomatic children

    Airway remodelling in children with cystic fibrosis

    No full text
    BACKGROUND: The relationship between airway structural changes and inflammation is unclear in early cystic fibrosis (CF) lung disease. A study was undertaken to determine changes in airway remodelling in children with CF compared with appropriate disease and healthy controls. METHODS: Bronchoalveolar lavage and endobronchial biopsy were performed in a cross-sectional study of 43 children with CF (aged 0.3-16.8 years), 7 children with primary ciliary dyskinesia (PCD), 26 with chronic respiratory symptoms (CRS) investigated for recurrent infection and/or cough and 7 control children with no lower airway symptoms. Inflammatory cells, cytokines, proteases and matrix constituents were measured in bronchoalveolar lavage fluid (BALF). Reticular basement membrane (RBM) thickness was measured on biopsy specimens using light microscopy. RESULTS: Increased concentrations of elastin, glycosaminoglycans and collagen were found in BALF from children with CF compared with the CRS group and controls, each correlating positively with age, neutrophil count and proteases (elastase activity and matrix metalloproteinase-9 (MMP-9) concentration). There were significant negative correlations between certain of these and pulmonary function (forced expiratory volume in 1 s) in the CF group (elastin: r = -0.45, p<0.05; MMP-9:TIMP-1 ratio: r = -0.47, p<0.05). Median RBM thickness was greater in the CF group than in the controls (5.9 microm vs 4.0 microm, p<0.01) and correlated positively with levels of transforming growth factor-beta(1) (TGF-beta(1); r = 0.53, p = 0.01), although not with other inflammatory markers or pulmonary function. CONCLUSIONS: This study provides evidence for two forms of airway remodelling in children with CF: (1) matrix breakdown, related to inflammation, proteolysis and impaired pulmonary function, and (2) RBM thickening, related to TGF-beta(1) concentration but independent of other markers of inflammation
    corecore