71 research outputs found
CPVMatch - Concentrating photovoltaic modules using advanced technologies and cells for highest efficiencies
This paper presents the project Concentrating Photovoltaic modules using advanced technologies and cells for highest efficiencies (CPVMatch), which is funded from the European Union’s Horizon 2020 research and innovation programme. V multi-junction solar cells and CPV modules. Concerning cells, novel wafer bonded four-junction solar cells made of GaInP/GaAs//GaInAs/Ge are optimized with the target of reaching 48% efficiency under concentration at the end of the project. Moreover, multi-junction solar cell technologies with advanced materials - like ternary IV element mixtures (i.e. SiGeSn) and nanostructured anti-reflective coatings - are investigated. Concerning CPV modules the project focuses on both Fresnel-based and mirror-based technologies with a target efficiency of 40% under high concentrations beyond 800x. Achromatic Fresnel lenses for improved light management without secondary optics are investigated. In addition, smart, mirror-based HCPV modules are developed, which include a new mirror-based design, the integration of high efficiency, low cost DC/DC converters and an intelligent tracking sensor (PSD sensor) at module level. A profound life-cycle and environmental assessment and the development of adapted characterization methods of new multi-junction cells and HCPV modules complete the work plan of CPVMatch
High prevalence of Trichomonas gallinae in wild columbids across western and southern Europe
Avian trichomonosis is known as a widespread disease in columbids and passerines, and recent findings have highlighted the pathogenic character of some lineages found in wild birds. Trichomonosis can affect wild bird populations including endangered species, as has been shown for Mauritian pink pigeons Nesoenas mayeri in Mauritius and suggested for European turtle doves Streptopelia turtur in the UK. However, the disease trichomonosis is caused only by pathogenic lineages of the parasite Trichomonas gallinae. Therefore, understanding the prevalence and distribution of both potentially pathogenic and non-pathogenic T. gallinae lineages in turtle doves and other columbids across Europe is relevant to estimate the potential impact of the disease on a continental scale
Catalyst composition and impurity-dependent kinetics of nanowire heteroepitaxy.
The mechanisms and kinetics of axial Ge-Si nanowire heteroepitaxial growth based on the tailoring of the Au catalyst composition via Ga alloying are studied by environmental transmission electron microscopy combined with systematic ex situ CVD calibrations. The morphology of the Ge-Si heterojunction, in particular, the extent of a local, asymmetric increase in nanowire diameter, is found to depend on the Ga composition of the catalyst, on the TMGa precursor exposure temperature, and on the presence of dopants. To rationalize the findings, a general nucleation-based model for nanowire heteroepitaxy is established which is anticipated to be relevant to a wide range of material systems and device-enabling heterostructures.S.H. acknowledges funding from ERC grant InsituNANO (No. 279342). A.D.G. acknowledges funding from the Marshall Aid Commemoration Commission and the National Science Foundation. C.D. acknowledges funding from the Royal Society. A portion of the research was also performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s (DOE) Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. DOE under Contract DE-AC05-76RL01830. We gratefully acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. This work was performed in part at CINT, a U.S. DOE, Office of Science User Facility. The research was funded in part by the Laboratory Directed Research and Development Program at LANL, an affirmative action equal opportunity employer operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract DE-AC52-06NA25396.This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/nn402208p. Gamalski AD, Perea DE, Yoo J, Li N, Olszta MJ, Colby R, Schreiber DK, Ducati C, Picraux ST, Hofmann S, ACS Nano 2013, 7 (9), 7689–7697, doi:10.1021/nn402208
Periodically Changing Morphology of the Growth Interface in Si, Ge, and GaP Nanowires
Nanowire growth in the standard \u3c 111 \u3e direction is assumed to occur at a planar catalyst-nanowire interface, but recent reports contradict this picture. Here we show that a nonplanar growth interface is, in fact, a general phenomenon. Both III-V and group IV nanowires show a distinct region at the trijunction with a different orientation whose size oscillates during growth, synchronized with step flow. We develop an explicit model for this structure that agrees well with experiment and shows that the oscillations provide a direct visualization of catalyst supersaturation. We discuss the implications for wire growth and structure
- …