181 research outputs found
Analyses of cerebral microdialysis in patients with traumatic brain injury: relations to intracranial pressure, cerebral perfusion pressure and catheter placement
<p>Abstract</p> <p>Background</p> <p>Cerebral microdialysis (MD) is used to monitor local brain chemistry of patients with traumatic brain injury (TBI). Despite an extensive literature on cerebral MD in the clinical setting, it remains unclear how individual levels of real-time MD data are to be interpreted. Intracranial pressure (ICP) and cerebral perfusion pressure (CPP) are important continuous brain monitors in neurointensive care. They are used as surrogate monitors of cerebral blood flow and have an established relation to outcome. The purpose of this study was to investigate the relations between MD parameters and ICP and/or CPP in patients with TBI.</p> <p>Methods</p> <p>Cerebral MD, ICP and CPP were monitored in 90 patients with TBI. Data were extensively analyzed, using over 7,350 samples of complete (hourly) MD data sets (glucose, lactate, pyruvate and glycerol) to seek representations of ICP, CPP and MD that were best correlated. MD catheter positions were located on computed tomography scans as pericontusional or nonpericontusional. MD markers were analyzed for correlations to ICP and CPP using time series regression analysis, mixed effects models and nonlinear (artificial neural networks) computer-based pattern recognition methods.</p> <p>Results</p> <p>Despite much data indicating highly perturbed metabolism, MD shows weak correlations to ICP and CPP. In contrast, the autocorrelation of MD is high for all markers, even at up to 30 future hours. Consequently, subject identity alone explains 52% to 75% of MD marker variance. This indicates that the dominant metabolic processes monitored with MD are long-term, spanning days or longer. In comparison, short-term (differenced or Δ) changes of MD vs. CPP are significantly correlated in pericontusional locations, but with less than 1% explained variance. Moreover, CPP and ICP were significantly related to outcome based on Glasgow Outcome Scale scores, while no significant relations were found between outcome and MD.</p> <p>Conclusions</p> <p>The multitude of highly perturbed local chemistry seen with MD in patients with TBI predominately represents long-term metabolic patterns and is weakly correlated to ICP and CPP. This suggests that disturbances other than pressure and/or flow have a dominant influence on MD levels in patients with TBI.</p
Excitatory Amino Acids Contribute to the Pathogenesis of Perinatal Hypoxic-Ischemic Brain Injury
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75512/1/j.1750-3639.1992.tb00697.x.pd
Electrocautery causes more ischemic peritoneal tissue damage than ultrasonic dissection
Contains fulltext :
96869.pdf (publisher's version ) (Open Access)BACKGROUND: Minimizing peritoneal tissue injury during abdominal surgery has the benefit of reducing postoperative inflammatory response, pain, and adhesion formation. Ultrasonic dissection seems to reduce tissue damage. This study aimed to compare electrocautery and ultrasonic dissection in terms of peritoneal tissue ischemia measured by microdialysis. METHODS: In this study, 18 Wistar rats underwent a median laparotomy and had a peritoneal microdialysis catheter implanted in the left lateral sidewall. The animals were randomly assigned to receive two standard peritoneal incisions parallel to the catheter by either ultrasonic dissection or electrocautery. After the operation, samples of microdialysis dialysate were taken every 2 h until 72 h postoperatively for measurements of pyruvate, lactate, glucose, and glycerol, and ratios were calculated. RESULTS: The mean lactate-pyruvate ratio (LPR), lactate-glucose ratio (LGR), and glycerol concentration were significantly higher in the electrocautery group than in the ultrasonic dissection group until respectively 34, 48, and 48 h after surgery. The mean areas under the curve (AUC) of LPR, LGR, and glycerol concentration also were higher in the electrocautery group than in the ultrasonic dissection group (4,387 vs. 1,639, P=0.011; 59 vs. 21, P=0.008; 7,438 vs. 4,169, P=0.008, respectively). CONCLUSION: Electrosurgery causes more ischemic peritoneal tissue damage than ultrasonic dissection.01 juni 201
Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice
Background: Brain edema as a result of secondary injury following traumatic brain injury (TBI) is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear. Methods: In this study we used controlled cortical impact (CCI) as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI). Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data. Results: Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury. Conclusion: Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice
Consensus statement from the 2014 International Microdialysis Forum
This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00134-015-3930-yMicrodialysis enables the chemistry of the extracellular interstitial space to be measured. Use of this technique in patients with acute brain injury has increased our understanding of the pathophysiology of several acute neurological disorders. In 2004 a consensus document on the clinical application of cerebral microdialysis was published. Since then there have been significant advances in the clinical use of microdialysis in neurocritical care. The objective of this review is to report on the International Microdialysis Forum held in Cambridge, UK, in April 2014 and to produce a revised and updated consensus statement about its clinical use including technique, data interpretation, relationship with outcome, role in guiding therapy in neurocritical care and research applications.We gratefully acknowledge financial support for participants as follows: P.J.H. - National Institute for Health Research (NIHR) Professorship and the NIHR Biomedical Research Centre, Cambridge; I.J. ? Medical Research Council (G1002277 ID 98489); A. H. - Medical Research Council, Royal College of Surgeons of England; K.L.H.C. - NIHR Biomedical Research Centre, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme); M.G.B. - Wellcome Trust Dept Health Healthcare Innovation Challenge Fund (HICF-0510-080); L. H. - The Swedish Research Council, VINNOVA and Uppsala Berzelii Technology Centre for Neurodiagnostics; S. M. - Fondazione IRCCS C? Granda Ospedale Maggiore Policlinico; D.K.M. - NIHR Senior Investigator Award to D.K.M., NIHR Cambridge Biomedical Research Centre (Neuroscience Theme), FP7 Program of the European Union; M. O. - Swiss National Science Foundation and the Novartis Foundation for Biomedical Research; J.S. - Fondo de Investigaci?n Sanitaria (Instituto de Salud Carlos III) (PI11/00700) co-financed by the European Regional Development; M.S. ? NIHR University College London Hospitals Biomedical Research Centre; N. S. - Fondazione IRCCS C? Granda Ospedale Maggiore Policlinico
- …