5,922 research outputs found
Time-delayed feedback in neurosystems
The influence of time delay in systems of two coupled excitable neurons is
studied in the framework of the FitzHugh-Nagumo model. Time-delay can occur in
the coupling between neurons or in a self-feedback loop. The stochastic
synchronization of instantaneously coupled neurons under the influence of white
noise can be deliberately controlled by local time-delayed feedback. By
appropriate choice of the delay time synchronization can be either enhanced or
suppressed. In delay-coupled neurons, antiphase oscillations can be induced for
sufficiently large delay and coupling strength. The additional application of
time-delayed self-feedback leads to complex scenarios of synchronized in-phase
or antiphase oscillations, bursting patterns, or amplitude death.Comment: 13 pages, 13 figure
Improved Model-Independent Analysis of Semileptonic and Radiative Rare B Decays
We update the branching ratios for the inclusive decays and the exclusive decays , with \ell=e, \m, in the standard model by including the explicit O(\a_s) and corrections. This framework is used in conjunction with the current measurements of the branching ratios for B\to X_s \g and decays and upper limits on the branching ratios for the decays to work out bounds on the Wilson coefficients , , and appearing in the effective Hamiltonian formalism. The resulting bounds are found to be consistent with the predictions of the standard model and some variants of supersymmetric theories. We illustrate the constraints on supersymmetric parameters that the current data on rare B decays implies in the context of minimal flavor violating model and in more general scenarios admitting additional flavor changing mechanisms. Precise measurements of the dilepton invariant mass distributions in the decays , in particular in the lower dilepton mass region, and the forward-backward asymmetry in the decays , will greatly help in discriminating among the SM and various supersymmetric theories
Symmetries and Ambiguities in the linear sigma model with light quarks
We investigate the role of undetermined finite contributions generated by
radiative corrections in a linear sigma model with quarks.
Although some of such terms can be absorbed in the renormalization procedure,
one such contribution is left in the expression for the pion decay constant.
This arbitrariness is eliminated by chiral symmetry.Comment: 9 pages. Added references through the text; an author was added due
to an important contribution; corrected typos; the title also was changed.
Submitted to Modern Physics Letter
Experimental investigation of a transonic potential flow around a symmetric airfoil
Experimental flow investigations on smooth airfoils were done using numerical solutions for transonic airfoil streaming with shockless supersonic range. The experimental flow reproduced essential sections of the theoretically computed frictionless solution. Agreement is better in the expansion part of the of the flow than in the compression part. The flow was nearly stationary in the entire velocity range investigated
A Reference Genome For The Nectar-Robbing Black-Throated Flowerpiercer (Diglossa Brunneiventris)
Black-throated Flowerpiercers (Diglossa brunneiventris) are one species representing a phenotypically specialized group of tanagers (Thraupidae) that have hooked bills which allow them to feed by stealing nectar from the base of flowers. Members of the genus are widely distributed in montane regions from Mexico to northern Argentina, and previous studies of Diglossa have focused on their systematics, phylogenetics, and interesting natural history. Despite numerous studies of species within the genus, no genome assembly exists to represent these nectivorous tanagers. We described the assembly of a genome sequence representing a museum-vouchered, wild, female D. brunneiventris collected in Peru. By combining Pacific Biosciences Sequel long-read technology with 10x linked-read and reference-based scaffolding, we produced a 1.08 Gbp pseudochromosomal assembly including 600 scaffolds with a scaffold N50 of 67.3 Mbp, a scaffold L50 of 6, and a BUSCO completeness score of 95%. This new assembly improves representation of the diverse species that comprise the tanagers, improves on scaffold lengths and contiguity when compared to existing genomic resources for tanagers, and provides another avenue of research into the genetic basis of adaptations common to a nectivorous lifestyle among vertebrates
Improved results for N=(2,2) super Yang-Mills theory using supersymmetric discrete light-cone quantization
We consider the (1+1)-dimensional super Yang--Mills theory
which is obtained by dimensionally reducing super Yang--Mills
theory in four dimension to two dimensions. We do our calculations in the
large- approximation using Supersymmetric Discrete Light Cone
Quantization. The objective is to calculate quantities that might be
investigated by researchers using other numerical methods. We present a
precision study of the low-mass spectrum and the stress-energy correlator
. We find that the mass gap of this theory closes as the
numerical resolution goes to infinity and that the correlator in the
intermediate region behaves like .Comment: 18 pages, 8 figure
Simulation of Dimensionally Reduced SYM-Chern-Simons Theory
A supersymmetric formulation of a three-dimensional SYM-Chern-Simons theory
using light-cone quantization is presented, and the supercharges are calculated
in light-cone gauge. The theory is dimensionally reduced by requiring all
fields to be independent of the transverse dimension. The result is a
non-trivial two-dimensional supersymmetric theory with an adjoint scalar and an
adjoint fermion. We perform a numerical simulation of this SYM-Chern-Simons
theory in 1+1 dimensions using SDLCQ (Supersymmetric Discrete Light-Cone
Quantization). We find that the character of the bound states of this theory is
very different from previously considered two-dimensional supersymmetric gauge
theories. The low-energy bound states of this theory are very ``QCD-like.'' The
wave functions of some of the low mass states have a striking valence
structure. We present the valence and sea parton structure functions of these
states. In addition, we identify BPS-like states which are almost independent
of the coupling. Their masses are proportional to their parton number in the
large-coupling limit.Comment: 18pp. 7 figures, uses REVTe
Tunka-Rex: the Cost-Effective Radio Extension of the Tunka Air-Shower Observatory
Tunka-Rex is the radio extension of the Tunka cosmic-ray observatory in
Siberia close to Lake Baikal. Since October 2012 Tunka-Rex measures the radio
signal of air-showers in coincidence with the non-imaging air-Cherenkov array
Tunka-133. Furthermore, this year additional antennas will go into operation
triggered by the new scintillator array Tunka-Grande measuring the secondary
electrons and muons of air showers. Tunka-Rex is a demonstrator for how
economic an antenna array can be without losing significant performance: we
have decided for simple and robust SALLA antennas, and we share the existing
DAQ running in slave mode with the PMT detectors and the scintillators,
respectively. This means that Tunka-Rex is triggered externally, and does not
need its own infrastructure and DAQ for hybrid measurements. By this, the
performance and the added value of the supplementary radio measurements can be
studied, in particular, the precision for the reconstructed energy and the
shower maximum in the energy range of approximately eV. Here
we show first results on the energy reconstruction indicating that radio
measurements can compete with air-Cherenkov measurements in precision.
Moreover, we discuss future plans for Tunka-Rex.Comment: Proceeding of UHECR 2014, Springdale, Utah, USA, accepted by JPS
Conference Proceeding
- …