17 research outputs found

    Endogenous Glutamate Excites Myenteric Calbindin Neurons by Activating Group I Metabotropic Glutamate Receptors in the Mouse Colon

    Get PDF
    Glutamate is a classic excitatory neurotransmitter in the central nervous system (CNS), but despite several studies reporting the expression of glutamate together with its various receptors and transporters within the enteric nervous system (ENS), its role in the gut remains elusive. In this study, we characterized the expression of the vesicular glutamate transporter, vGluT2, and examined the function of glutamate in the myenteric plexus of the distal colon by employing calcium (Ca2+)-imaging on Wnt1-Cre; R26R-GCaMP3 mice which express a genetically encoded fluorescent Ca2+ indicator in all enteric neurons and glia. Most vGluT2 labeled varicosities contained the synaptic vesicle release protein, synaptophysin, but not vesicular acetylcholine transporter, vAChT, which labels vesicles containing acetylcholine, the primary excitatory neurotransmitter in the ENS. The somata of all calbindin (calb) immunoreactive neurons examined received close contacts from vGluT2 varicosities, which were more numerous than those contacting nitrergic neurons. Exogenous application of L-glutamic acid (L-Glu) and N-methyl-D-aspartate (NMDA) transiently increased the intracellular Ca2+ concentration [Ca2+]i in about 25% of myenteric neurons. Most L-Glu responsive neurons were calb immunoreactive. Blockade of NMDA receptors with APV significantly reduced the number of neurons responsive to L-Glu and NMDA, thus showing functional expression of NMDA receptors on enteric neurons. However, APV resistant responses to L-Glu and NMDA suggest that other glutamate receptors were present. APV did not affect [Ca2+]i transients evoked by electrical stimulation of interganglionic nerve fiber tracts, which suggests that NMDA receptors are not involved in synaptic transmission. The group I metabotropic glutamate receptor (mGluR) antagonist, PHCCC, significantly reduced the amplitude of [Ca2+]i transients evoked by a 20 pulse (20 Hz) train of electrical stimuli in L-Glu responsive neurons. This stimulus is known to induce slow synaptic depolarizations. Further, some neurons that had PHCCC sensitive [Ca2+]i transients were calb immunoreactive and received vGluT2 varicosities. Overall, we conclude that electrically evoked release of endogenous glutamate mediates slow synaptic transmission via activation of group I mGluRs expressed by myenteric neurons, particularly those immunoreactive for calb

    Macrophage regulation of the “second brain”: CD163 intestinal macrophages interact with inhibitory interneurons to regulate colonic motility - evidence from the Cx3cr1-Dtr rat model

    Get PDF
    Intestinal macrophages are well-studied for their conventional roles in the immune response against pathogens and protecting the gut from chronic inflammation. However, these macrophages may also have additional functional roles in gastrointestinal motility under typical conditions. This is likely to occur via both direct and indirect influences on gastrointestinal motility through interaction with myenteric neurons that contribute to the gut-brain axis, but this mechanism is yet to be properly characterised. The CX3CR1 chemokine receptor is expressed in the majority of intestinal macrophages, so we used a conditional knockout Cx3cr1-Dtr (diphtheria toxin receptor) rat model to transiently ablate these cells. We then utilized ex vivo video imaging to evaluate colonic motility. Our previous studies in brain suggested that Cx3cr1-expressing cells repopulate by 7 days after depletion in this model, so we performed our experiments at both the 48 hr (macrophage depletion) and 7-day (macrophage repopulation) time points. We also investigated whether inhibitory neuronal input driven by nitric oxide from the enteric nervous system is required for the regulation of colonic motility by intestinal macrophages. Our results demonstrated that CD163-positive resident intestinal macrophages are important in regulating colonic motility in the absence of this major inhibitory neuronal input. In addition, we show that intestinal macrophages are indispensable in maintaining a healthy intestinal structure. Our study provides a novel understanding of the interplay between the enteric nervous system and intestinal macrophages in colonic motility. We highlight intestinal macrophages as a potential therapeutic target for gastrointestinal motility disorders when inhibitory neuronal input is suppressed

    Applying the Bradford Hill Criteria for Causation to Repetitive Head Impacts and Chronic Traumatic Encephalopathy

    Get PDF
    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with a history of repetitive head impacts (RHI). CTE was described in boxers as early as the 1920s and by the 1950s it was widely accepted that hits to the head caused some boxers to become "punch drunk." However, the recent discovery of CTE in American and Australian-rules football, soccer, rugby, ice hockey, and other sports has resulted in renewed debate on whether the relationship between RHI and CTE is causal. Identifying the strength of the evidential relationship between CTE and RHI has implications for public health and medico-legal issues. From a public health perspective, environmentally caused diseases can be mitigated or prevented. Medico-legally, millions of children are exposed to RHI through sports participation; this demographic is too young to legally consent to any potential long-term risks associated with this exposure. To better understand the strength of evidence underlying the possible causal relationship between RHI and CTE, we examined the medical literature through the Bradford Hill criteria for causation. The Bradford Hill criteria, first proposed in 1965 by Sir Austin Bradford Hill, provide a framework to determine if one can justifiably move from an observed association to a verdict of causation. The Bradford Hill criteria include nine viewpoints by which to evaluate human epidemiologic evidence to determine if causation can be deduced: strength, consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment, and analogy. We explored the question of causation by evaluating studies on CTE as it relates to RHI exposure. Through this lens, we found convincing evidence of a causal relationship between RHI and CTE, as well as an absence of evidence-based alternative explanations. By organizing the CTE literature through this framework, we hope to advance the global conversation on CTE mitigation efforts

    Gastrointestinal dysfunction in patients and mice expressing the autism-associated R451C mutation in neuroligin-3

    Get PDF
    Gastrointestinal (GI) problems constitute an important comorbidity in many patients with autism. Multiple mutations in the neuroligin family of synaptic adhesion molecules are implicated in autism, however whether they are expressed and impact GI function via changes in the enteric nervous system is unknown. We report the GI symptoms of two brothers with autism and an R451C mutation in Nlgn3 encoding the synaptic adhesion protein, neuroligin-3. We confirm the presence of an array of synaptic genes in the murine GI tract and investigate the impact of impaired synaptic protein expression in mice carrying the human neuroligin-3 R451C missense mutation (NL3R451C ). Assessing in vivo gut dysfunction, we report faster small intestinal transit in NL3R451C compared to wild-type mice. Using an ex vivo colonic motility assay, we show increased sensitivity to GABAA receptor modulation in NL3R451C mice, a well-established Central Nervous System (CNS) feature associated with this mutation. We further show increased numbers of small intestine myenteric neurons in NL3R451C mice. Although we observed altered sensitivity to GABAA receptor modulators in the colon, there was no change in colonic neuronal numbers including the number of GABA-immunoreactive myenteric neurons. We further identified altered fecal microbial communities in NL3R451C mice. These results suggest that the R451C mutation affects small intestinal and colonic function and alter neuronal numbers in the small intestine as well as impact fecal microbes. Our findings identify a novel GI phenotype associated with the R451C mutation and highlight NL3R451C mice as a useful preclinical model of GI dysfunction in autism. LAY SUMMARY: People with autism commonly experience gastrointestinal problems, however the cause is unknown. We report gut symptoms in patients with the autism-associated R451C mutation encoding the neuroligin-3 protein. We show that many of the genes implicated in autism are expressed in mouse gut. The neuroligin-3 R451C mutation alters the enteric nervous system, causes gastrointestinal dysfunction, and disrupts gut microbe populations in mice. Gut dysfunction in autism could be due to mutations that affect neuronal communication.This work was supported by an Idea Development Award from the United States Department of Defense’s Congressionally Directed Medical Research Programs (CDMRP) Autism Research Program (AR110134) to E.L.H.-Y. and J.C.B.; the Victorian Government through the Operational Infrastructure Scheme, National Health and Medical Research Council (NHMRC) project grants (APP566642 to J.C.B. and APP1047674 to E.L.H.-Y.) and the Royal Melbourne Hospital Neuroscience Foundation. E.L.H.-Y. also received an ARC Future Fellowship (FT160100126) and an RMIT Vice Chancellor’s Senior Research Fellowship which supported G.K.B. and S.H. T.S., P.U., and N.Y. were funded by grants RO1AI100914, P30-DK56338, and U01-AI24290 awards to Baylor College of Medicine funded from the National Institute of Allergy and Infectious Diseases and National Institute of Diabetes and Digestive and Kidney Diseases at the National Institutes of Health (T.C.S.)

    Altered amygdala excitation and CB1 receptor modulation of aggressive behavior in the neuroligin-3<sup>R451C</sup> mouse model of autism

    Get PDF
    Understanding neuronal mechanisms underlying aggression in patients with autism spectrum disorder (ASD) could lead to better treatments and prognosis. The Neuroligin-3 (NL3)R451C mouse model of ASD has a heightened aggressive phenotype, however the biological mechanisms underlying this behavior are unknown. It is well established that NL3R451C mice have imbalanced excitatory and inhibitory synaptic activity in the hippocampus and somatosensory cortex. The amygdala plays a role in modulating aggressive behavior, however potential changes in synaptic activity in this region have not previously been assessed in this model. We investigated whether aggressive behavior is robustly present in mice expressing the R451C mutation, following back-crossing onto a congenic background strain. Endocannabinoids influence social interaction and aggressive behavior, therefore we also studied the effects of cannabinoid receptor 1 (CB1) agonist on NL3R451C mice. We report that NL3R451C mice have increased amplitude of miniature excitatory postsynaptic currents (EPSCs) with a concomitant decrease in the amplitude of inhibitory postsynaptic currents (IPSCs) in the basolateral amygdala. Importantly, we demonstrated that NL3R451C mice bred on a C57Bl/6 background strain exhibit an aggressive phenotype. Following non-sedating doses (0.3 and 1.0 mg/kg) of the CB1 receptor agonist WIN55,212-2 (WIN), we observed a significant reduction in aggressive behavior in NL3R451C mice. These findings demonstrate altered synaptic activity in the basolateral amygdala and suggest that the NL3R451C mouse model is a useful preclinical tool to understand the role of CB1 receptor function in aggressive behavior

    Properties of an intermediate-duration inactivation process of the voltage-gated sodium conductance in rat hippocampal CA1 neurons

    No full text
    Rapid transmembrane flow of sodium ions produces the depolarizing phase of action potentials (APs) in most excitable tissue through voltage-gated sodium channels (NaV). Macroscopic currents display rapid activation followed by fast inactivation (IF) within milliseconds. Slow inactivation (IS) has been subsequently observed in several preparations including neuronal tissues. IS serves important physiological functions, but the kinetic properties are incompletely characterized, especially the operative timescales. Here we present evidence for an “intermediate inactivation” (II) process in rat hippocampal CA1 neurons with time constants of the order of 100 ms. The half-inactivation potentials ( V0.5) of steady-state inactivation curves were hyperpolarized by increasing conditioning pulse duration from 50 to 500 ms and could be described by a sum of Boltzmann relations. II state transitions were observed after opening as well as subthreshold potentials. Entry into II after opening was relatively insensitive to membrane potential, and recovery of II became more rapid at hyperpolarized potentials. Removal of fast inactivation with cytoplasmic papaine revealed time constants of INa decay corresponding to II and IS with long depolarizations. Dynamic clamp revealed attenuation of trains of APs over the 102-ms timescale, suggesting a functional role of II in repetitive firing accommodation. These experimental findings could be reproduced with a five-state Markov model. It is likely that II affects important aspects of hippocampal neuron response and may provide a drug target for sodium channel modulation. </jats:p

    Editorial: Interactions of the nervous system with bacteria

    Get PDF
    Recent evidence that microbes influence mood and behavior via the gut-brain axis has opened up new avenues for research into neurological disorders. Hence, many studies now employ multidisciplinary approaches assessing for changes in microbial diversity, neuroinflammation as well as alterations in neuronal circuitry that impact brain function in health and disease. Such collaborative research was virtually unheard of in previous decades but holds remarkable promise for identifying novel pathways and therapeutic targets within the gastrointestinal tract to treat brain disorders. This editorial highlights these exciting developments in neuroscience, microbiology, and immunological research by examining 13 articles focused on how the nervous system interacts with bacteria in preclinical and clinical settings. A common theme is the dissection of complex interactions between the nervous system and bacteria as well as the resulting influences on inflammatory pathways, symptoms, or behavior in patient studies and mouse models. Specifically, neuronal-microbial interactions in the context of nervous system disorders ranging from autism, Attention Deficit Hyperactivity Disorder, Alzheimer’s Disease and Major Depressive Disorder to migraine and epilepsy are investigated. Overall, we propose that via leveraging our understanding of the gut-brain axis, the modulation of gut microbes leading to significant benefits for brain health can become a reality
    corecore